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__'")The notion of phases offers a framework for understanding compiled strongly typed languages, and

works toward an improved, strongly typed language basis for reusable software. The research shows

how types can be manipulated as first-class values, and notions of compiletime and runtime can be

unified, without sacrificing strong typing (compiletime type checking) or runtime speed. Type

checking and expression evaluation are performed using the same evaluation mechanism.

The apparent conflict of allowing types as first-class values, yet enforcing compiletime type checking,

is resolved by the notion of multiple phases: though types may be manipulated as first.class values

during one phase, the computed type values become invariants for the next phase. -

We demonstrate the notion of phases by defining a sample source language. Phi, which looks like a

typed lambda calculus; an object language, IL. which is syntactically similiar to an untyped lambda

calculus, but is strongly typed; an associated IL Machine that interprets IL programs; and a translator

for converting Phi programs to IL programs. Strong typing is guaranteed in spite of the fact that the

Phi translator does no type checking. We also discuss how phases might be used to efficiently

perform partial evaluation.

A phase. i. is the execution of an IL program, p.. The result may be another IL program, P .. to be

executed in phase J'+ 1. or it may be the desired final answer. Phase i acts as compiie,:me for phase

1 + 1. doing all type checking necessary to guarantee that program pi. I is free if runtime type errors.

During phase i, program pi can manipulate types as first-class values: in general these computed

types will be invariants oi the next phase.
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Chapter 1
Introduction

1.1. Research Contribution

This dissertation describes a programming language notion -- phases -- and an associated

programming method. Its contribution is both practical and academic: it takes a small step toward

providing a strongly typed language basis for more reusable software: and it provides a more getieral,

unified view of certain notions in programming languages and methodology, including compiletime

and runtime.

This work is not advocating any particular programming language or method. The main intent of

this dissertation is to expose the essence of multiple strongly typed evaluation phases, without

encumbering the reader with extraneous details or tangential issues. We illustrate the essential ideas by

defining some pedagogical languages based on the Lambda Calculus [Barendregt 84]: Phi and IL. AsI%,

of this writing, two versions of these languages have been implemented and tested.

1.1.1. Ideas in This Research

It is often difficult, in reading research reports. to distill the important ideas being advocated from

the mundane details of the particular system described. Outlined below are what the author considers ".

to be the most interesting ideas embodied in this research.

1..1.1..,An Abstract Data Type for Type-checked Program Fragments

A particular abstract data type (the data type ERT) is defined for constructing and manipulating

type-checked programs. This allows program fragments to be securely manipulated as data, and thus

allows compiletme operations to be treated in the same manner as runime operations. The primitive

operations implementing this data type ensure that every program constructed in this wa. is ,. ,

syntactically correct and strongly typed. (Section 2.2.1.)

U
%%%

?%- %--,-o. '.mf , -l--- r-++ ," *, € + "'' " . " - " '- "+ "." • ". - " " " * ° ". " •.



1.1.1.2. One Machine Acts as Compiler and Runtime Machine

Notions of compiletime and runtime are unified: compiletime operations are generalized and

become a superset of runtime operations. A single abstract machine can do both efficiently. (Section ?

3.1.2.)

1.1.1.3. Multiple Strongly TYped Evaluation Phases

Each phase is the execution of a program on the abstract machine. The result of each phase may be

the final answer or another type-checked program. Each phase type checks and generates the program

for the next phase. Types may be manipulated as first-class values during any phase: they become

invariants for the next phase. "Compiletime" and "runtime" thus become relative terms. (Sections 3.2

and 3.3.)

1.1.1.4. The Translator Does No Type Checking

Given a program in the source language, the translator can produce a strongly typed program in the

implementation language without doing any type checking. That is. the translator does no type

checking, but the resulting program is guaranteed free of runtime type errors, This fact may at first

sound contradictory; it is explained in Section 3.3.3. If
1.1.1.5. One Machine Does Partial and Full Evaluation

A single abstract machine can efficiently do both partial evaluation and full evaluation. (Chapter 5.)

1.1.1.6. Phase Compilation P

Chapter 5 discusses how phases might be used for partial e\aluation for a strong]\ typed language. %

Partial evaluation is often slow. but it might be made more efficient b% using two steps: phase

compilation and phase evaluation.

Gi'en a list of the free variables to be ci\en fixed ,alues. a phase compiler Aould prepare a program

for phase evaluation, which will achicve the effect of efficient pairual/full e\aluation. The program

%ould first be "phase compiled." using a list of the free ariables -- and their t.pes -- to be instantiated.

Efficient partial/full evaluation would then be performed b executing this "phase compiled" program

using phase evaluation. (Section 5.4.)

VZ-
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1.1.1.7. An Unusual View of Abstract Data Types

Since types and code are first-class values, our view of Abstract Data Types (ADTs) is in terms of

what primitive functions are necessary in order to support user-defined ADTs. Operationally, one ,

needs these functions in order to convert between the domains of the abstraction and the

representation. However, they can be ordinary functions rather than special language constructs.

(Section 6.1.)

1.2. Background to This Research

Programming language experts should read the definitions of "runtime type errors" and "strong

typing" in Sections 1.2.1.1 and 1.2.1.2, but may otherwise wish to skip to Section 1.3, which describes

this research.
-S,.

1.2.1. Two Models of Program Evaluation: Interpreted and Compiled

Figure 1-1 shows two models of how a source program written in some language L might be

evaluated.

In the interpreted case, the program is given directly to an interpreter. A program generally also

needs a specified environment, which might include values for the program's input variables and

definitions of some standard functions. The interpreter runs the program with the given environment 5,

and produces the desired result of the computation -- the final answer which might be some number. a

character string, or a more complex object such as a file.

In the compiled case. the source program is first translated. by a compiler. into an object program in ".'

some other language L': this step is called cornpiletime. An L' interpreter then runs the object program.

with the desired environment to produce the final answer: this step is called runtime. The object

program ma. be stored and run repeatedl. using different environments or inputs. without re-

translating the source program.

This %kork concerns the compiled. rather than the interpreted, model.

%.

%,
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Figure 1-1:
Two Models of Program Evaluation
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1.2.1.1. Definition: Runtime Type Errors

Suppose the source program contains a mistake, causing the L interpreter (in the interpreted case) or

the L' interpreter (in the compiled case) to try to apply some erroneous operation, such as multiplying

two character strings. It may be detected by the interpreter, and an error message issued, or it may not

be detected, in which case the result of the computation Aill be garbage. In either case, it is called a

runtime type error to distinguish it from any errors that the compiler might issue before the program is

executed.

1.2.1.2. Definition: Strong Typing

If the source program contains adequate information about the types of values to be computed. the
compiler can ensure that the generated object program will be free of runtme type errors. Strong

typing means providing an a prior, or compiletime, guarantee against runtime type errors.1

This work concerns only languages providing strong typing.

1.2.2. The Purposes of Compiling

There are two basic advantages to compiling the source program, as opposed to interpreting it

directly: type security and efficiency.

Type security Because the source language is strongly typed, the compiler can provide an a priori
guarantee that no runtime type errors will occur when the object program is
executed on the implementation machine. This provides an assurance that the
program is at least partally correct, without executing the program.

Efficiency A compiler can improve a program's runtime efficiency in three ways: by computing
constant expressions at compiletime: by selecting optimal object program code._%
based on values and types known at compiletime: and by translating the program

St

'1Te quesuon sometuas anus: Is division by zero considered a runume t pe error' %'hat about an way index out of "
bounds' Or n attempt to read beond the end of the input'

Paul Eggen (Egert 811 has shown that it is possible to define the type symem securely enough that such runume errors are not
nc ib e For es aple. one car define , t .pe non- e -ftee r ,.--t .!udes -1! integers esc t zero. and nother ::. e
possiMb-ero-iategers that includes all inteers Only .alues of the type mwmzero-atelgers would be allowed as disors, and (for
example) subuacuon of two nowno-ilteprs would yield a result of r.pe pIasd .ero-iime fn To convert a %alue of Tpe,
possi'.zeroisteqa to a value of pe momaroitqers. one must use a specal case-contomty clause. placng the detecton of
a zero %alue under exphit progrn control. The type s5stern can smailarly be defined in such a way that ara-ndex-o-of -
bounds and other such errors are not possble Although many languages that purport to be strongly typed. such as PIscal allow
such loopholes in the type system. this work assumes that the type system is defined securely enough that such runune errors are
not possible.

%%'
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into a language inherently more efficient for the implementation machine to

execute.
2

1.2.3. Problems with Traditional Compiled Languages

The benefits of compiling are well established, and languages specifically designed to be compiled --

compiled languages -- are common. In spite of these advantages, there are some problems with

traditional compiled languages.

1.2.3.1. Lack of Programmer Control

Inherently, the compiler must know a great deal about the source program and the types of values

being manipulated in order to produce an efficient, type-checked object program. However, the

programmer generally does not have access to much of this compiletime information.

For example, in Pascal, there is no way to ask for the size of an array or for the first value of an

enumerated type.3 Certainly the compiler has this information, but the programmer has no way of

accessing it.

1.2.3.2. Ad Hoc Notions

It is easy to see similarities between the kinds of operations performed by the compiler at

compiletime. and the operations performed under program control at runtime. In spite of the.,

conceptual similarities. compiletime notions tend to be ad hoc. For example. the shortcomings of

Pascal mentioned above were addressed in Ada4 by supplying attribute operations, which ask for an ".

array's size or an enumerated type's first value. The Ada Reference Manual [Ada 82] defines 48 such

attributes! Some of these attributes are computable at compiletime and some are not.

Type expressions are usually treated very differently from other -- conventional -- expressions, such

as numcric expressions. In fact. they usually have different syntactic rules. Consider Pascal. One can

define a ariable x to be some user-defined type :

var x: t; ( t is some user-def ined type )
Or one can declare x using an array type expression involhin2 i:

ThLs third mnehod of nmprosnng efficienc) l be ignored when Ae genCTrahze compileunme to an% e at the nouon of phases
I lou'eer the idea of translaung to a more eflcient langualge s not mcom.pauble uih the notion of phases Instead of executung
an Implementaton Language program directil. %e could firm translate it to another more effioenti' executed language

3,Nn enumerated type is a tTpe for which all %alues are exphcwuc listed. for example. type color - (red. green, blue).

As i a registered trademark of the L.S Go'ernment. Ada Joint Program Office
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var x: array [1..20) of t;

However, one cannot compute an arbitrary function of t:
var x: f(t); ( Illegal }

To various extents, some languages, such as Donahue's Extended Lambda Calculus [Donahue 79],

Russell [Boehm 80], EUI [Wegbreit 74] and Pebble [Burstall 84], do treat types as first-class valuer;, that

is, one may use type variables and write functions and expressions involving types. However, these

languages tend to syntactically separate type expressions from normal expressions, restrict the kinds of

computations allowed on types to ensure that the type values are statically computable, or forego

strong typing and use runtime type checking. Pebble's treatment of types is general and uniform in

these respects. but it does treat one aspect of types differently, as mentioned in Section 1.2.3.4.

1.2.3.3. The Conflict Between "Strong Typing" and "Types as First-Class Values"

The motivation for allowing types as first-class values is clear: the abilities to pararneterize by types.

use arbitrary algorithms to construct new types. and make decisions based on types. would support

more reusable software. Similarly. the benefits of strong typing are well established: type security and

efficiency.

Unfortunately, there is an inherent conflict between allowing types as first class values and the desire

for strong typing. Basically, strong typing requires that the type of every expression be know n before

runtime. However, allowing types as first-class values means that types may involve arbitrary

expressions. use variables, invoke functions, depend on input, etc.

1.2.3.4. Different Mechanisms for Type Checking and Evaluation

Type checking is similar to program evaluation. The sL'nilaritN is readily apparent when one

compares a tNpical language's semantic rules for type checking with its semantic rules for evaluaion:

both draw conclusions about an expression's value or type based on the values or types of the

expressions subexpressions. and both folio%% lexical scoping rules for identifiers.

Nonetheless. strongly typed languages have invariably defined separate mechanisms for type U
checking and program evaluation. For example. even in Burstall and Lampson's Pebble [Burstall 84].

though t.pe checking involves evaluation, a different mechanism is used for type checking than for

evaluation. This is shown clearly in Table 6. Section 5.3 of Pebble fBurstall 84]. where the type

checking rules are separated from the evaluation rules to form what is essentially a different machine.

(The rules are separated to demonstrate the distinction between the act of type checking and the act of

7y ft.'
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evaluation.) Both sets of rules apply to the same language constructs, but they are applied at different

times, depending on whether the program is being type checked or executed.

1.3. This Research

Can types and code be manipulated effectively under programmer control during compiletime, while

retaining strong typing? Can compiletime notions such as type checking be unified with runtime

notions?

The answer is "Yes." The language notion of multiple strongly typed evaluation phaseP unifies

compiletime and runtime, and allows types and code to be manipulated as first-class values, while

retaining strong typing. Types, manipulated as first-class values in one phase, become in variants of the

next phase, as explained in Section 3.3.2. Phases might also be used to perform partial evaluation, as

discussed in Section 5. The purpose of this work is to explore and introduce the notion of multiple

strongly typed evaluation phases.6

Our particular approach to type checking was motivated by certain key biases: .

- A firm belief in strong typing, that is, in providing an a priori guarantee that a program is
free of any possible runtime type errors.

- A desire to unify the notions of compiletime and runtime.

-An orientation toward explicit programmer expression rather than inference performed by f.
the language implementation. These orientations are contrasted in Section 13.1.

- A desire to support the general programming method described in Section 2.1.

.4
,e

5 The term pf+ases is often used in this work instead of the longer. more descnpt)ie term multiple srrongb. )ped evaluation
phases

6 This work was approached a little differently than most doctoral research. Rather than first carefull% defining a problem and
then seeking a solution, we pursued an interesting idea and developed it to see how it might be useful Thi unusual approach Ls
risk:,, because there is less assurance of a useful outcome, and it places a greater burden on the researcher for scholarlh reN eu
and integration of related work. Nonetheless. this approach should be encouraged much more The traditonal approach of %
defining a problem and then seeking a solution is contrar to creauvity. because ever% problem definition presupposes a cerain
%iew of the world The most interesting and innoative de'elopments are those that change ones ie, of the world. making
problems irrcleart instead of solving them

8 • * *
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1.3.1. Expressing versus Inferring

Programming languages are designed under two competing orientations: the programmer can

express information, or the language implementation can infer the information. The Phi language

described in Section 4.1 is strongly oriented toward expressing rather than inferring. This section

explains this choice and the differences between the two orientations.

For example, rather than requiring the compiler to infer the type of an expression from its context, in

Phi the type is simply computed as any other computation. Another example of this distinction is that

type checking polymorphic functions in ML [Gordon 791 involves unification, a process of pattern

matching to find the most general type solution. If the same kind of polymorphic functions were

offered in a language oriented toward programmer expression. the programmer would have the

responsibility of expressing the desired type solution, and the language should provide useful type

operations to make this easy. This is like the difference between proof checking and proof discovery. %

13.1.1. Advantages of Inference over Expression

The main argument for having the compiler infer whatever it can is that it reduces the burden on the

programmer. This is a good argument, but it is not prima-facie evidence that compiler inference is

preferable to language expressiveness. It does, however, point out that ease of expression is \'ery

important. Concise syntactic constructs and libraries of reusable components should be provided to j.

make expression easy. 0%

Another argument for having the compiler infer information is that the inferences are assured correct

(assuming that the compiler is correct, and that the programmer understands the inferences). If the

programmer is given the responsibility of computing the types of expressions. for example. it is

conceivable that the programmer would occasionally make a mistake and compute the A rong type.

thus allowing an operation to be applied erroneously. In this case (to ensure strong typing). if the

programmer is allowed to compute types arbitrarily., it is clear that the compiler must ha% e some *a% of

\erifying that an) computed types are in fact legal.

1.3.1.2. Disadvantages of Inference as Opposed to Expression

One disadvantage of relying on the compiler to infer information is that the compiler must be more

complex. Thus. compilation may in\olve such tasks as unification or sol ing systems of simultaneous

equations.

9
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Perhaps the most important disadvantage, though, is that the programmer may want to express

things that the compiler is not capable of inferring. This may be viewed as both a theoretical and a

practical problem. As a simple example of the theoretical difficulty, suppose that every expression in

the language must be guaranteed to halt, and that this is considered part of the expression's type

correctness. The halting problem shows that this is theoretically impossible for the compiler to

algorithmically determine, however, a compiler could much more easily verify a proof supplied by the

programmer. As another example of the theoretical difficulty, Coppo [Coppo 80] asserts that when the

type system of ML [Gordon 79] is extended. the question of whether a term possesses a type becomes

only "semi-decidable".

The practical difficulty is that the compiler may not be smart enough to allow constructs that the

programmer may wish to express. And unfortunately, making the compiler smarter generally makes it

more complex.

1.3.1.3. The Gray Area Between Inference and Expression

There is no rigid distinction between inference and expression. For example, under the expressive

orientation, a library routine implementing an inference engine could be proVided. Or conversely, a

language implementation's inference rules could simulate expression evaluation. Language processors

generally contain elements of both inference and expression.

The work presented here is based on a strong bias toward expression, tempered with the compiletime .4

checks necessary to ensure that any computed type values are legal. We do not intend to argue that

expression is unequivocally better than inference. We are simply pointing out the importance of this

orientation with respect to this work.

1.4. Related Work

1.4.1. Pebble

The Pebble language, b Burstall and Lampson (Burstall 841. uniformly allows types, bindings, and

declarations as first-class %alues. Pebbles bindings are name-%alue pairs: the% are essenuallb,

environments. Giving explicit access to bindings as first-class values makes it eas. to build and access

libranes or modules of reusable functions or other %alues under programmer control. Pebble's

declarations are the types of bindings.

10
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For simplicity, and to focus attention only on the notion of phases, in Phi we do not provide bindings

and declarations as first-class values, though they would be very interesting to add. The idea fits our

general philosophy perfectly.
7

Pebble also provides dependent types (see Section 6.2). though our Phi language does not. The need

for them in Phi is somewhat reduced by the notion of multiple phases; this is discussed in Section 6.2.

Pebble deals with language ideas, whereas the notion of strongly typed evaluation phases might be

more accurately characterized as a language implementation idea. As such, Pebble's semantic rules

have no rigid separation between evaluation stages representing compiletime and runtime. However,

Pebble's type checking and evaluation rules can be separated to provide static type checking. This

separation essentially leads to different machines (that are applied to the same program) for doing type

checking and evaluation. In contrast, our work provides a single machine that performs both roies of

type checking and evaluation, depending on the expressions in the program. To clarify this distinction.

in Pebble. whether a program is being type checked or evaluated depends on the set of rules applied*-

it does not depend on the program itself. Whereas in our work, the syntax of the program determines

whether our single type-checking-and-evaluation machine will do type checking or conventional

evaluation.

1.4.2. Partial Evaluation

Partial evaiuanon is variousl. also known as symbolic evaluation, partial execution. s'mbolic

execution. or mixed computation. Ershov [Ershov 77a] [Ershov 82] has probably been its main

proponent.

1.4.2.1. Definition of Partial EValuation

Partial evaluation reduces one program to another equivalent program in which some parts of the

first program have been evaluated or simplified. For example. the expression a-b- 23 might be

reduced to the equivalent expression a-,- b- 6. Or, if a value of 5 is provided for %ariable b. expression

a , b- 2*3 might be partially evaluated to a - I*

In general. if one or more of a program's :nput parameters are constant. the program may be paruali ,

evaluated to produce a new. more efficient program by taking advantage of those knovn constant

values.

In fact the first implementation of phases did treat bindngs and declarations as first-class %aJues

11
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1.4.2.2. Uses of Partial Evaluation

Partial evaluation has mainly been used as a flexible mechanism for specializing programs. The

purpose has generally been to produce a more efficient resulting program -- part of the computation

has been done already. This efficiency motive is one of the two basic reasons for compiling programs

as opposed to interpreting them directly.8  However, the advantage of partial evaluation over

compilation is its flexibility -- any subset of a program's free variables (or inputs) can be fixed by

supplying particular values for them. Gifford, SchooleL. et al. [Schooler 84] are also working on using

partial evaluation to perform type checking: this correctness motive is the other basic reason for

compiling.

Partial evaluation is also useul in separating notation from data representation. For example, in

Pascal. the syntax for accessing data is tied to the representation of the data, making it difficult to
r "Jb

change data representations. The programmer must choose between representing some data as a

function or in a record, a linked list, or an array, and the syntax for accessing the data reflects this

choice:

a(b) Function invotation.

a.b Accessing a component of a record.

at.b Accessing through a pointer variable.

a[bi Array subscripting.

Function invocation is the most general case, because any kind of data structure can be hidden inside

the function body.9 Why shouldn't the programmer always hide the data structure inside a function?

The answer is the traditional high cost of function inocation. But using partial evaluation, the

function call can be avoided by beta-expandingn (also called beta-reducing) the function call in-line.

thus eliminating the performance justification for using specialized notation. Beta-expanding recursive

functions can be a problem in general, but since (at the moment) we are simph discussing the

possibility of hiding data structure access inside of function calls, recursive functions are not an issue

here.

[Secton 1.2 2 outlines the basic purposes of comp;ling

9Actualhy. in Pascal. only scalar types can be returned b) a funcion Ho'e'er. other languages do not ha~e this restricuon

10 Beta expansion or beta reducton replaces a function cail with the functions bod.. having substituted actual parameters for 'r

formal parameters in the bod) Care must be taken to presere the properties of lexical scoping Beta expansion is similar to
rn'ac-r expansion. except that macro expansion does not always guarantee that the properties of Icical scoping are preser'ed

12 ""
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1.4.2.3. Comparing Phases and Partial Evaluation

As developed in Chapter 4, phase evaluation differs from partial evaluation in two important ways:

(1) a program's various phases are explicitly indicated in the application program, and (2) program

fragments can be manipulated as first-class values of an abstract data type (the data type ERT). The

latter difference gives a macro-like capability, and the primitive operations that implement the abstract '

data type ensure that all generated programs are type correct.

The development in Chapter 5 shows how modifying and restricting phases might result in a system

that essentially performs partial evaluation. Section 5.4 proposes a "phase compiler" approach that is

analogous to the "compiled generation" approach of Beckman, et al. [Beckman 76]. but ours applies to

strongly typed languages, whereas theirs applied to the untyped language LISP [McCarthy 66]. This

approach allows one abstract machine to efficiently perform both "partial" evaluation and "'full"

evaluation.

If phases were adapted to perform partial evaluation as discussed in Chapter 5, the most important 3,,.

remaining differences between phase evaluation and partial evaluation would be that: (1) phase %

evaluation syntactically distinguishes between those portions of a program that are being "partially" .
evaluated and those that are being "fully" evaluated, thus allowing the phase evaluator to perform both N

"partial" and "full" evaluation efficiently; and (2) under phase evaluation, a program's result type is

always known before the program is evaluated.

1.4.3. Current Work by Gifford, Schooler, et al.

Gifford. Schooler. et al. apparently assume a similar general programming method to ours (described

in Section 2.1). Their "kernel" language. the Imagine Base Language (IBL). corresponds to our

Implementauon Language (IL). Their programming method also assumes a partial evaluator.

compilers. and interpreters, whereas ours includes a single Implementation Language Machine: our

programming method makes explicit the operation of combining programs to form new programs.

whereas theirs does not.

Their approach to providing an exten;ihle. yet efficient language is based on partial evaluation:

specialb defined forms can be convened to simpler. more efficient forms by partial evaluation. From

Schooler [Schooler 84]:
Our proposed methodology is a generalization of the Russell [Boehm 80] and

ELI [Wegbreit 74] techniques: all [language] extensions are implemented in the language.
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allowing full user access to the extension mechanism. In addition, partial evaluation will be
used to optimize the code to the point where using the user-defined extension mechanisms
is essentially free in terms of runtime performance.

Gifford, Schooler. et al. also use their "front end" translators to insert assertions into the kernel

language (IBL) code, and use the partial evaluator to compute as many of these assertions as possible.

Since type checking is handled by inserting assertions about types, they thus provide compiletime type

checking where possible and runtime type checking where necessary. Again from Schooler [Schooler

84]:

The code which the partial evaluator acts on will be generated by syntactic transforms
from surface language constructs. The generated code will preserve all user-specified side-
effects but will also include applicative constructs for type checking, etc.

Finally, since Gifford, Schooler, et al. are using partial evaluation, the comments on partial

evaluation given in Section 1.4.2.2 apply to their work as well. -,
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Chapter 2
Programming Method

This chapter discusses an assumed programming method. This programming method is very simple %

and rudimentary, and is not the focus of the research. It is included only to provide the necessary

framework for discussing the main thesis of this work: the notion of phases.

The reader wishing to skim this chapter must be sure not to skip over Section 2.2.1. which defines *0

ERTs, and is essential to subsequent chapters.

2.1. General Programming Method

The general programming method shown in Figure 2-1 illustrates how programs (or program

fragments) may be used to create other programs. There are three essential aspects, described in the

following sections.

2.1.1. Distinct Application and Implementation Languages 4

First. the general programming method assumes that humans write source programs (or fragments)

in an application language (Phi) that is syntactically convenient for humans. and that these programs

are then translated into an implementation language (IL) that is more convenient for mechanical P%

interpretation. This prevents the programmer from direct. writing ill-formed programs in the

common implementation language. Because all programs in the implementation language are

generated and manipulated mechanicall. the\ can be guaranteed to ha~c certain properties: in

particular. to be syntactically correct and to be free of possible runtime type errors. (Runtirne rt.pe ,.%

errors \kere defined in Section 1.2.1.1.)

This \kork defines two versions of a simple application language. Phi. and a simple implementation

language. IL. A Phi Translator. which translates from Phi to IL. is also defined.

,%
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Figure 2-1:
General Programming Method
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2.1.2. Programs Are Combined

Second. the programming method assumes that useful programs in the common implementation

language. possibly from libraries, may be combined to form new programs. In this way. various %

software components could be reused. "-

%

The operation of combining IL programs is not defined here. It is assumed to be handled by

whatever particular programming method the programmer uses. and is not essential for discussing the l.notion of phases1 1 

"

2.1.3. Programs Are Instantiated

Finalh, the programming method assumes that a program can be specialized, instantiated, refined. %

or evaluated to form various versions or to compute the final answer. An entire tree of versions might ' %

be derived. This aspect is consistent with notions of transformational implementation [Cheatham 81].

mechanized top-down stepwise refinement, and partial evaluation [Ershov 77a]. It also means that a N.
version might be generated that would gather program performance statistics, and these statistics could 0

be used in automatically instantiating a more efficient version for those data characteristics [Balzer 83].

Instantiaion is defined in this work by the semantics of the Implementation Language (IL), that is,

by the IL Machine.

2.2. Specific Programming Method

Before describing the notion of phases. let us first discuss the assumed programming method more '

specificalli as it relates to the succeeding description of phases. Figure 2-2 illustrates the specific

programming method. It involves application programs written in Phi, a Phi Translator. IL programs

in the form of ERTs (defined below), and an IL Machine. M

7.1% 37

\onheess the special data type ERT. descrbed :n Section 2 1. and the example languages Static-Phi and Stuc-IL.
described in Chapter 4. make it eas% to anipulate and combine lpe-cnecked program fragments vth integnt% under progr-, '5..

co.:trc r I. facL ,hat is precisehy te purpose of the unusual (check-) const rcts of Static-IL listed in Section 4 2.3: the\ take
pe-chccKec I programs (in the form of ERTs) and combine Lhem lo produce new trpe-criecked IL programis A combining A,

prrStiam, ould thus take ERT \alues as input (from me en ronm .cnt) and produce an ERT %alue Section 4 3 d:scusses the
'). ironn cnts requtred b) Stauc-IL programs and Oo s examples of ERT alues
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Figure 2-2: Specific Programming Method
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2.2.1. ERT: Expression, Required-environment, Type

In order to interpret the specific programming method shown in Figure 2-2. we must first define a

special data type for representing type-checked program fragments: the data type ERT. An ERT is a

triplet having the following components:

Expression An expression in the Implementation Language.

Required-environment
A list of each free variable appearing in the Expression component, paired with its
type. Each free variable is listed once, with one type. and no other variables are
listed.

Type The Expression component will evaluate to a value of this type.

The purpose of ERT triplets is to facilitate manipulating programs (expressions), both in the overall

programming method and in the implementation language, while ensuring their integrity. We are not

interested in just any conceivable (e~r,0 triplet -- only those that are meaningful. or valid. as defined

below.1
2

e

2.2.2. Valid ERTs

An ERT (e,r. 0 is valid if expression e, evaluated in an environment that satisfies the required-

environment r, is guaranteed to evaluate to a value of type t. By "an environment that satisfies the
%A

required-environment" we mean an environment env such that for each variable-type pair <v,> listed

in required-environment r, variable v is bound to a value of type t in env.

E\ery ERT generated b the Phi Translator or the IL Machine is valid.+

12David MacQueen and John Mitchell ha'.e aptl. pointed out that a %alid ERT correspondc cioset' to the notion of a npirg
To quote Reynolds [Reynolds 85]:

"Lct e be an expression. w (often called a iype assignmeni) be a mapping of (at least) the
identifiers occurring free in e into types. and o be a type. Then

1- e: o
is called a typing, and read 'e has type o under *."

Note that this interpretation is assuming a parucular deduction or e aIuauon mechanism. represented b\ the smbol --' (it
might be more precise to subscript this symbol with the name of the deduction trechanism such as "- Szmsarh. there L. a
corresponding implied deduction mechanism for ERT triplets, which is gisen b\ the semantic rules fo. irnterpreting expresssons
;n the Implementation Language.

13To proe this assertion would be quite tedious The iast section of Appendix A ncludes a hnef sketch of hou to approach
pro ing it.
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2.2.3. Interpreting the Specific Programming Method

First, the programmer writes a Phi program.

Next, the programmer invokes the Phi Translator to translate this program to a valid ERT (i.e. an IL

program).

The programmer might next use some method of combining various ERTs to create a new ERT.

Then. the programmer creates an appropriate environment, and evaluates the ERT by invoking the

IL Machine on this environment and the Expression component of the ERT. The environment

supplies the input, and must include values of the proper types for all free variables in the expression.

(That is. the environment must satisfi, the Required-environment component of the ERT, as discussed

in Section 2.2.1. The command interpreter used to invoke the IL Machine must enforce this. as

discussed in Section 2.2.4.)II
The Type component of the ERT tells what type of value the IL Machine will produce. assuming no

"compiletime" error occurs. (If such an error does occur, one can either thitik of the IL Machine as

returning some special error value distinct from all other legitimate values, or as returning nothing at

all. since evaluation is aborted.) If the Type component is ert, the result will be another ERT;
14 a

otherwise it will be some final answer -- a number, for example. Thus, one knows beforehand

whether the result of executing each IL program %ill be another ERT (another program) or a final

answer.

The case when the IL Machine produces another ERT is especiall. interesting. Since an ERT

contains an expression in the Implementation Language. the IL Machine can be % ie% ed as specializing.

instantidting. or (possibly) partially evaluating a program. as in the General Programming Method

(Section 2.1). But it can also be viewed as compiling a program. though the source and object

ianguages are the same. This is further explained in Chapter 3.

Note that it is tvial to determine whether the result produced b\ the IL Machine will be a final

answer: the Type component of an ERT specifie, the type of \alue that Aill he produced then the

Expression component is evaluated. Thus. if the Type component is anything other than the literal

4 A final answer is aefined as an\ %alue other than an ERT tLhat is it Ls not another program It might be a number boolean

,tnng or other v.ic&, basic %alue Conceptuall) a fina; anuer mght be an entire file ihough in our simple pedagogical
2snjuages it wiji not
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art, the result of the phase evaluating the expression will be a final answer. This is evident in the

examples of Section 4.4.

2.2.4. A Command Interpreter

Certain aspects of the programming method shown in Figure 2-2 must be done by the human. For

example, the human must write the original Phi program, invoke the Translator on it. combine

program fragments (ERTs) as desired. supply the desired environment, and invoke the IL machine on

the Expression component of the desired ERT. The simplest method of doing these things is to

provide a command interpreter -- most naturally written in the Phi language itself-- and this is what we

will assume, though any other more automated method is possible as well. It is the command

interpreter's responsibility to ensure that the expression and environment actually given to the IL

Machine are syntactically correct, type correct, and compatible. However, the use of ERTs makes this

very easy to enforce, especially since every ERT produced by the Phi Translator or the IL Machine is

guaranteed to be syntactically correct and type correct, and the Required-environment explicitly lists

the identifiers and types of values required in the environment.

2.2.5. Environments

An environment simply provides bindings of identifiers to values. As shown in Figure 2-2. along ,

with each IL program (EXPR). the IL Machine must be given an environment (ENV) that supplies .'

values of the correct type for all free %ariables in the IL program (EXPR). In our simple model, an IL

program's input must be supplied via the environment: that is, the IL program might have a free

variable representing the program's input. and the environment would have to supply a value for that

free %anable. thus proiding the programs input.

For example. consider the following trivial program that computes the cosine of a number. x.

(cos )

The free variable x represents the program's input. and the free variable cos refers to a standard cosine

trigonometric function. Thus, the environment for this program must be constructed to include

bindings for x (a number), and cos (a function from numbers to numbers). Typically. the binding for

cos would come from a standard library, whereas the binding for x would be explicitly provided by the

user. I
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We do not show how environments are generated, but the command interpreter can provide ways of

creating, combining, and storing environments, while keeping track of the types of the variables

defined in them. Pebble [Burstall 841. for example, uses bindings as first-class values, and provides

operations for creating and combining them.

Section 4.3 explains more about the environments required for Static-IL programs. (Static-IL is

discussed in Section 42.)

2.3. Motivating Example: General Purpose Sorting Function

This section describes a hypothetical example of how general-purpose reusable programs might be

created and used. The purpose of this example is to provide a tangible goal to guide the reader's

intuition through the rest of this work, where the notion of phases is explained. The reader may wish to

skip this section at first, and return to it later as needed.

Bear in mind that the languages discussed in this work are provided for pedagogical purposes only.

They would not be practical for real-life applications such as the motivating example described in this
0section. However, these pedagogical languages should demonstrate the basic semantic notions

necessary in a full. usable language that could be practically applied to the example below.

2.3.1. The Desire for a General-Purpose Sorting Function

Consider the problem of providing a truly general-purpose sorting function. Such a function should

be able to efficiently handle a wide range of sorting needs. from sorting a small fixed number of items

in the computer's primary memory, to sorting thousands of records in primary memory, to sorting

millions of records in secondary memory such as disk or tape. i5

Clearl. it is impossible for a single sorting function to fill all of these needs efficient. enough to be

generally useful, because there are man% different algorithms that are appropriate for different needs.

Any single program that tried to meet all needs would be much too large to be practical for the smaller

cases.

1 c Ths example comes from another author, but e hA' been unable to determine whom
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2.3.2. A Sorting Function Generator

But consider a sorting function generator. This generator could be given input characterizing a

particular sorting need, and would produce a sorting function custom-tailored for that application.

Input to the generator might include parameters describing the data types to be sorted, where the data

are ctored, the type of algorithm to be used, or even a characterization of the generated program's

expected input data distribution. The generator would use this information to choose the most

appropriate algorithm (from some repertoire) and produce the most efficient data structure

declarations.

An automatically generated sorting function probably would not be quite as efficient in every case as

a sorting function that a programmer could write from scratch. However, it could be good enough in %

most cases that it would be far more cost-effective to use the automatically generated version than to %

write a new one. This is a fundamental assumption behind the desire for reusable software.

2.3.3. Explicit Generation vs. Partial Evaluation

The sorting function generator could be written in two ways: it could explicitly manipulate program

fragments for the generated program, or it could be written as one big parameterized sorting program

that is partially evaluated to produce a small specialized version. Ignoring the lack of strong typing in .,

LISP. the approach of explicit manipulation might correspond to LISP programs that construct other

LISP programs as S-expressions. In the partial evaluation approach, the language would have to allow

types as first-class values so that data type declarations could be parameterized by input values, and the p

partial evaluator would manipulate program fragments to produce a specialized version -- the program i

would not express this manipulation explicitly. Regardless of Which approach is taken. the important

point here is that the work of producing the specialized or generated sorting program must be separated

from the sorting program's execution. For this discussion, we will assume that explicit generation is

used.

2.3.4. Phases Used

Let us now clearly distinguish between the act of executing t'e sorting program generator and the act

of executing the generated sorting program. These executions correspond to tA o acts of lnsanh'atlon.

shown in Figures 2-1 and 2-2, or two phases. n and n-,- I. as described in Chapter 3.

To ensure strong typing. both the soring program generator and the generated program must be

!.
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guaranteed against runtime type errors. In the phase parlance of Chapter 3. if the generator is to be

executed in phase n. it can be type checked in phase n-i: if the generated program is to be executed in

phase n + 1. it can be type checked in phase n.

2.3.5. Generalizing Further ,S

So far we have focused on the application program's need to use a general-purpose function. To

generalize the example further, suppose that the sorurfg program generator also uses some general-

purpose mathematical function that also must be specialized before being used. Thus. a math function

generator would produce a specialized version of the math function, which would be used in the

sorting function generator to produce a specialized sorting function, which would be used in some

application program. Again. in the parlance of Chapter 3. the math function generator vould be

executed in phase n- / to produce and type check the specialized math function, which would be used

by the sorting function generator in phase n. These phases are illustrated in Figure 2-3.

In summary., general-purpose function generators can be used to produce specialized functions.

which may themselves be used by other general-purpose function generators.
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Figure 2-3: Phases of Sorting Example

Math function
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Other precision, etc.
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Tapplication inputs
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Chapter 3
The Conceptual Model of Multiple Phases

This chapter describes the conceptual model of multiple strongly typed evaluation phases. Proper

understanding of the conceptual model is critical in understanding the Phi language. the Phi translator.

and the Implementation Laniguage. i'

3.1. Arriving at Phases by Extending Compiletime

The conceptual model of phases is best understood by presenting the arguments that led to its

development. We begin with a simple conceptual view of traditional compiletime and runtimne. shown

in Figure 3-1. 

%i

First, a source program. written in a strongly typed language. is compiled into an object program. "

This step is Phase I -- compiletime. During this phase. the compiler manipulates type %alues and

program code, and as a result produces an intermediate object program that is guaranteed free of
16 %$

runtime type errors.16
5

The object program. with a suitable environment, is then executed on an implementation machine.

This. step is Phase 2 -- runurne. During this phase. basic values such as numbers. character stnngs. and J
boolcans are manipulated. and the result of the computation is some basic final %dlue such as a

number, a character string, a boolean. or. conceptually, a file. The environment defines all identifiers
Lhat are not locally declared in the program. that is. it provides bindings for all of the program's free

Sariables

:The question of whether there could be type errors in a program's input sometimes arises here For example an input
opecration requiring a number could instead be gp'en nme meaningless character strig This problem can be a'oided b% orIN
pro% iding an input operation that alwavs reads characters and forcing tx-pe con% ersion to he accomplished b%, ordina;ry functions e.'
under programmer control Thus. for example. thc input sequence -123" A~ould be read as the characirs 1 3 of kno~ri %,
i% pe and then con'ered by the program to the numtric %alue 123 .?

iFor %implicit.. the simple pedagogical languajec dewcnbed in NS %%Oft do not include input or OUtPUL operations

26
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Figure 3-1:
Traditional Compiletime and Runtime

Source
Program %.

Compiletime: type values and code
Phase 1 Compiler are manipulated. Result is type-

checked object program. r

object-program

Environment
- (Input)

Phase 2 Implementation Runtime: basic values such as booleans
Language and numbers are manipulated. Result
Machine/ is some basic value such as a boolean

or number.
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3.1.1. Generalizing Compiletime

Let us now view the compiler as executing the source program to produce the object program, and

allow the programmer to express types as first-class values that are manipulated dunng compiletime.

And to provide really useful expressive power. let us also allow the programmer to express other t5pes

of values, for example, numbers and booleans, at compiletime, and to write arbitrary compiletime

expressions and functions involving these values.

Now, with values of various kinds (numbers. booleans, and of course types) being manipulated at

compiletime. it is conceivable that a so-called "runtime" type error could occur during compiletime.

For example. one may mistakenly try to add a number to a type during compiletime. Therefore, Ae

add another phase -- a pre-compiletime phase -- that does the type checking required to ensure that no
"runtime" type errors can occur during compiletime.

Our conceptual model, at this point, is shown in Figure 3-2. Phase 1. the pre-compiletime phase.

now manipulates type values and program code. and as a result produces a program that is guaranteed

not to commit a "runtime" type error when executed during the next phase. Phase 2. compiletime.

now manipulates numbers. booleans. type values, and program code, and produces a program that is

guaranteed free of runtime type errors. Phase 3. runtime. manipulates numbers and booleans as r

before, producing a final answer (number, boolean, ew.).

3.1.2. Generalizing Pre-compiletime, And So On ... %

At this point. we can make tmo obser.atons. First. the pre-compiletime phase is now performing a

role completel analogous to the role compiletime had pla.ed. Hence. \ke can appl% :he same

reasoning to generalize pre-compiletime. and add a pre-pre-compiletime phase. and so on. thus

potentally allowing an unbounded number of phases. Each phase except the last produces a type-

checked program for the next phase.

Second. we observe that the operations performed by the compiler ha\e nok become a superset of I
the operations performed at runtime. Hence we can unif the two so that one Implementation

L.anguage (IL) Machine fills both roles. The resulting conceptual model is described in Section 3.2.

% .... ., -, ." . %.. . -...--..



Figure 3-2: Pre-Compiletime Phase Added

Source
Program

4%

Pre-compiletime: types and code
Phase 1 Pre-compiler are manipulated. Result is type-

checked program.

Phase 2 Compiletime: basic values (such as :

Compiler booleans and numbers) and type
values and code are manipulated.

Result is type-checked program.

Phas 3 IpleentaionRuntime: basic values such asPhase 3 Ipe ntatio i%'

Language booleans and numbers are
Machinemanipulated. Result is some basic

value.
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3.2. Conceptual Model of Multiple Phases

Figure 3-3 ilustrates how a Phi program is translated and then. in effect. executed thiough several

intermediate phases before producing a final result.

Note the correspondence between Figure 3-3 and the specific programming method illustrated in

Figure 2-2. The loop shown in Figure 2-2 is unfolded in Figure 3-3: thus the conceptual model shows

several repetitions of the IL Machine -- one for each -time it is invoked. Also. for simplicity, the

combine action in Figure 2-2 is not shown in Figure 3-3.

3.3. Interpreting the Conceptual Model

A Phi program is first translated to ERT. The Expression component of ERT, is then executed on

the IL Machine in a suitable environment ENV2 -- this is phase 1 -- to produce ERTZ. The Type

component of ERT 1 specifies the type of value that will be produced b. phase 1. For the first phase. it

is always ert. indicaung that another ERT will be produced. Similarly. the Expression component of

ERTZ is then executed in phase 2 to produce ERT3 , and so on. The Type component of ERT2 - ".

specifies the type of value that will be produced as a result of phase 2, etc. The result of some phase n

is considered the final result of the computation because it is not an ERT. That is. the Type component

of ERT n indicated that the result would be something other than another ERT. Thus, the original Phi

program could be viewed as a meta-program because, in effect, it denotes a series of programs ERT1, ...

ERT n.

3.3.1. Properties of the Conceptual Model

The conceptual model has the following important properties:

- Each phase does the type checking necessary to ensure that no runime type errors are
po.ssible during the next phase.

- No runtime type errors are possible during the first phase, either.

- Ener. ERT produced b\ the Phi Translator or the IL Machine is \alid Specificall.. the
Expression component is guaranteed syntactically correct and t. pe correct.

- The type of each subexpression is computed at least one phase before the \alue of that
subexpression is computed. Similarly. the type of the program's result is kno n before the
program is phase evaluated (i.e. it is given as the Type component of an ERT .

.. defined in Section 22:

30 %
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Figure 3-3: Conceptual Model of Multiple Phases
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Each phase acts as compiletime for the next phase, and as runtime for the previous phase.
Thus, the terms "compiletime" and "runtime" are relative. These terms will still be used in
the rest of this work -- they are still meaningful terms -- but the reader should recognize
that their meanings are relative to other implied runtime or compiletime phases.

-The Phi Translator does no type checking -- it will produce a valid ERT, free of possible
runtime type errors, for any syntactically legal Phi program. This is explained in Section
3.3.3.

3.3.2. Resolving the Conflict Between "Strong Typing" and "Types as First-Class

Values"

Section 1.2.3.3 points out the inherent conflict between strong typing and the desire for types as

first-class values. In our model of multiple phases, types are indeed allowed as first-class values, yet

every phase is strongly typed. How is the conflict avoided in our model?

In general, types manipulated as first-class values during one phase become invariants of the next

phase, in the sense that a type used in a declaration represents an invariant. If an identifier is declared

to be some type, that type represents an invariant on the kinds of value that may be bound to that

identifier. Similarly, if a function's return value is declared to be a certain type, that type represents an

invariant on the kinks of value that the function may return.

In our model it is not possible to use a type. computed as a first-class value, as an invariant of the ,'

same phase during which it was computed. Type \alues computed in one phase have no bearing on the

types of the expressions executed during that same phase. 18 One can compute an arbitrary type value

during one phase, but that type value can only be used in declarations pertaining to subsequent phases

not in the declarations pertaining to that same phase. 19 For example. in the same phase. one cannot

both compute the type used to declare an identifier. and bind a value of that type to the identifier. The

type of the identifier must be computed during at least one phase before the identifier may be bound to

a talue of that type. Thus, the notion of separate phases prevents an\ possible circular dependenc

bctween an object's tNpe and its %alue. ON

18 T'..r pr~cpert. is readi!i eviden! !r Stax-l!. preented !n Section -12 Fkpre!c!,nF !n Stattic-IL are !pe checkec ar

generated in the form of ERTs. and in doing so. types are computed as firsi-class \alues liowe\er. there is no construct in
S zaUc-IL for evoluat:ng an ERT That is there is no pro ision for :nsoking the Stauc-IL Machine from % th in Static-IL tericc %
there is no wa. for the type values computed in one phase to ha\e any effect on Lhe typcs of the idenufiers or express,-n.
e\aluated dunng that same phase

19Conceijabi%, the tylpe ma' esen he computed b% a recurme funcuon, as mentioned in Section 6 3 though for simlphc::.
:ecursie functions are not pro ided in the Static-Phi and Static-1L languages described in Chapter 4
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3.3.3. The Paradox of Strong Typing Without Prior Type Checking

We mentioned that eiery phase is strongly typed, and that the IL program for every phase -- except

the first -- is type checked by the previous phase. We require that the first phase also be strongly typed.

yet we also mentioned that the Phi Translator does no type checking. How can we ensure that the IL

program produced by the Phi translator does not contain any runtime type errors if the IL Translator

does no type checking? The answer is simple: the translator produces an IL program in which every

subexpression evaluates to a value of the same type: type ERT.
.

This means that the only operations performed during the first phase are manipulations of program

fragments. This makes sense when one considers: what if it weren't true. That is. suppose some other

operation -- addition of two numbers, say -- could be performed during the first phase. Then. to

guarantee that this operation could not involve a runtime type error, there would either have 'to be

another previous phase or the translator would have to do some type checking.

Hence. every variable is type ERT initially, and every IL program produced by the translator

evaluates to an ERT (assuming no compiletime errors occur during evaluation). (If a compiletime

error does occur during evaluation, the program can either be thought of as returning some special

error value, distinct from all other values, or as returning nothing, since the evaluation is aborted.)

3.3.4. All Expressions Start Out Type ERT

If we view the IL programs ERT 1..ERT n in Figure 3-3 as representing successive versions of the

initial Phi program, then the type of every subexpression or variable in the initial Phi program starts

out as ERT. and remains ERT until some phase when it becomes fixed as some basic type. such as a

number or a boolean (any type other than ERT). Finally, during the following phase. the expression or,-

%ariable will have a value of that type (number or boolean).

This one-%a. progression represents the accumulation of information about the expression or h' ,

Nariable. Type ERT means that nothing is know n about the expression or anable. Then. dunnr some

phase. the type of the expression or variable is known (number or boolean. for example). Finall\.

during the next phase. the specific \aiuc of the expression or \ariabie is computed. This subject is

mentioned further in Section 7.2.8.
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3.4. Assigning Computations to Phases

Given a source program, we need some way to decide during what phases its various

subcomputations should be performed. For example, we require that the type of a function's formal

parameter be computed at least one phase before the function can be applied to any actual arguments.

There are two basic approaches we can take; the first of these has two variations.

1. Static determination. The phase for each computation is fixed during translation, before
the first phase. This approach most closely follows the reasoning presented in Section 3.1.
which led to the idea of multiple strongly typed evaluation phases, and this is the approach
on which this work was initially based. There are two sub-options possible under this
approach:

a. The source program can explicitly indicate which computations are to be performed
during each phase. This was the original approach conceived as "multiple strongly
typed evaluation phases". and is described in Section 4.

b. The Phi Translator might infer which computations should be performed during each
phase. This approach was not pursued in this work. We do not know how difficult
this alternative might be, or what problems it might present. It is open for future
research, as mentioned in Section 7.2.9.

2. Dynamic determination. The phase for each computation is determined during the various
execution phases, and depends on the environments supplied during the previous phases.
This would allow phases to achieve the effect of partial evaluation, because the types and
values of different free variables could be "fixed" as desired during different phases. The
essential distinctions between this kind of phase evaluation and partial evaluation are that.
under phases, the same machine would be used to perform "partial" and "full" evaluation.
there is a rigid requirement of strong typing in each phase, and the type of result -- either
the final answer or another program -- would be known in advance.

This approach has not been fully explored, but the possibility is discussed in Chapter 5.

3.5. How Many Phases Are Required?

HoN many phases will be required to execute a given Phi program to a final answer? In general. the

answer depends on the program. whether a model of static or dynamic determination of phases is used.

and might depend on the environments provided in the various phases.

Any given program will always require some mininum number of phases before it can produce a

final answer. For the Static-Phi language described in Section 4.1. an algorithm (Ccunt. defined in

Appendix A) is used to compute this minimum based on the lexical nesung level of emits and evals in
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the original Static-Phi program, and, hence, it cannot be infinite for a finite-sized program." For

example. the program demonstrated in Section 4.4.3 requires three phases, whereas the program in

Section 4.4.9 requires four phases.

What about using more phases than the minimum? When phases are determined statically, there is

little flexibility for extra phases, because a given program would expect certain inputs, via the

environments, in certain phases. (Section 4.3 discusses environments for Static-Phi.)

If phases were determined dynamically, with each phase performing the function of partial

evaluation, then extra phases might freely be used. Partial evaluation is defined to preserve the

semantics of the original program, so extra phases should certainly cause no harm, and they may

improve the efficiency of later phases by allowing the values of some expressions to be pre-computed.

Of course, if there are no more expressions that can be pre-computed, adding an extra phase does

nothing useful. As a trivial example, consider the program consisting only of the variable x. If no final

value is given for x, x will just partially evaluate to itself. That is, the program will be partially

evaluated perfectly well, but no useful work will be done because no further reduction is possible until

a final value is supplied for x.

0.
0 -0.

.

20Ve do not know if there might be an% other reasonable language in Ahich a %eil-formed program could requ:re an infinite

minimum number of phases We suspect not and the question is not considered here

,,
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Chapter 4
Static Determination of Phases

This chapter informally describes the originally conceived system of multiple phases. in which the

phase for a particular subcomputation is explicitly denoted in the source program. That is, the phase

for a given subcomputation is determined statically during translation. We demonstrate this approach

by defining a source language, Siatic-Phi, a Static-Phi Translator. and an implementation language,
'S

Static-IL. More precise semantic definitions are given in Appendix A.
1%

The reader well-versed in the typed lambda calculus may wish to skim Section 4.1. which describes

Static-Phi, noting the special emit and eval constructs, and then turn directly to Section 4.2, which

describes Static-IL. Section 4.2.3 is important because it discusses the unusual language constructs in

Static-IL. Finally, the reader is strongly urged to read the discussion of the two examples in Sections %
4.4.3 and 4.4.9 to gain an appreciation of how phases work.

4.1. The Static-Phi Language

The Static-Phi language is expression oriented, and looks like a simple typed lambda

calculus [Barendregt 84] with two extra constructs added. Types are unrestricted first-class values.

%k here% er a type is required. any arbitrary expression that evaluates to a type may be given. There is no

modifiable store, or assignment operation. There is one abstraction operator. X. for data abstraction.

Function abstraction. type abstraction, and code (ERT) abstraction. -

4.1.1. Conventional Static-Phi Language Constructs

The Static-Phi language includes the following basic forms: -%

cnslant A literal constantL for example. , ;iumber 1234. a Lru'dJ .aiuc fale. (r a t.Npe constnt
number, bool. ert. or type. Type constant type refers to the type of types: err is the
type of ERTs. descnbed in Section 2.2.1.

id An identifier (anable). .\n identifier always evaluates to the \alue bound to it in
the environment. i

w 0
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X id: exprd exprr . exPrbody
For creating an unnamed function abstraction. Exprd and exprr are arbitrary
expressions that must evaluate to types; they declare the types of the domain and
range of the function, that is, exprd is the type of the formal parameter id, and expr,
is the type of the function's return value. ExPrbody is the body of the function.
Because we require "compiletime" type checking (that is, one phase before
"runtime"). the formal parameter type will be evaluated one phase before the
function value (closure) is created. That is, if the function is to be applied in phase i,
the type of the formal parameter will be computed in phase i- I.

(exprr expr) Function application. Exprf is an arbitrary expression that must evaluate to a
function: expr will evaluate to the actual argument. The type of the actual
argument must match the declared type of the formal parameter for the function:
this is checked during the phase before the function is applied. The function
application always occurs during the same phase that the actual function value is
created, regardless of any nesting inside emits or evals (described below).

(funtype exprd expr )%
Standard function for constructing the types of functions. The subexpressions are

evaluated (they evaluate to types) and paired to represent the types of the domain
and range of a function. Expr, is the domain type; exprr is the range type. Of
course, both subexpressions must be type type; this is checked one phase before the %
function type is to be constructed and returned.

4.1.2. Normal Runtime Phase

Normal runime phase refers to the phase in which a particular operation is actually performed (as J

opposed, say. to the phase in which the operation is type checked). Within a single program the *,'*

normal runtime phase will be different for different instances of different operations. For example. the

type expression for a function's formal parameter might use an operation that is also used in the body"%
- * ..

of the function. Used in the formal parameter type expression, the operations normal runtime phase -

%k ill be one phase sooner than for the instance of the operation that appears in the bod) of the function. -'

"Normal runtime phase" is usually used as a comparatve term. to contrast the different phases when

tA o operations are performed.

B altering the normal runtime phase of an operation. one can cause the operation to be performed I
during some phase earlier or later than it would othernise be performed. Basically. if an operation is

used to compute a type that will be used to t\ pe check a subsequent phase. then one would want the

normal runtime phase of the operation to be one phase earlier than it otherwise Aould be. Or. if an .. .-.

operation is used to explicitly generate some code (an ERT) that is to be executed in a later phase (as

\ th macro expansion), then one would also want the normal runume phase of the operation to be one
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phase earlier than it otherwise would be. On the other hand, if the operation in question were a part of

the generated code, one would want its normal runtime phase to be one phase later: that is. the normal

runtime phase of the operations that are doing the generation should be one phase earlier than the

normal runtime phase of the operations in the generated code.

The normal runtime phase of a construct is altered in three ways: by being inside an emit (discussed

below), by being inside an eval (also below), or by being in a function abstraction's range or domain

type expression. The normal runume phase for a finction abstractions range or domain type

expression is implicitly one phase earlier than the normal runtime phase for the function, since the ?

function must be type checked during the phase before it is applied. Emit and eial are used to

explicitly change the normal runtime phase of an expression: eval makes the normal runtime phase

one phase earlier, while emit makes it one phase later. These are discussed below in Section 4.1.3. and

are more precisely defined in the formal semantics given in Appendix A.

4.1.3. Some Unusual Constructs

In addition to the familiar constructs outlined in Section 4.1.1, Static-Phi also includes the following

unusual forms.

(eia] expr) The normal runutme phase of expr is one phase earlier than in the surroundinc
context. Note that the domain and range type expressions in the A, construct. expr.

and exprr, are effectiely inside an implicit eval. because the types need to be
computed one phase before the function value (closure) is created. ,S

(emit expr) The normal runtime phase of expr is one phase later than in the surrounding
context.

.. ,

Note that our elal is very different from the LISP EVAL. Our emit and eal .frms are on]% ued

during translation. They are not executable notions. and there are no Stauc-IL s.ntactic forms that .,

correspond to them.

Note also that emit and eval cancel each other out. in a manner analogous to Jhe LISP back-quote

.....) and comma (",") macro constructs. Thus. (emit (eVal expr)). (eal (emit cxpr)). and e.xpr are

enbre!v equ:vaient m Staic-Phi.

,% %

.?
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4.1.4. Examples

This section shows some simple examples of Static-Phi programs. Section 4.4 shows how each of

these examples would be translated to Static-IL programs and appear in various phases. The
explanations of the identity function examples in Sections 4.4.3 and 4.4.9 give the flavor of what the

various phases do. We begin here with trivial examples and work up to more interesting cases.

4.1.4.1. F Twice

(f(fx))

Some functionfis applied twice to an argument x.

4.1.4.2. Identity Abstraction

X x: number - number. x
An unnamed identity function that takes a number and returns that same number.

4.1.4.3. Identity Application

( x : number - number. x 5)

The identity function from the previous example is applied to the number 5. The final result will be

5.%

4.1.4.4. Function Abstraction

X x": number - number. (succ (succ x))

If succ is the successor function on numbers. defined in the environment, this is an unnamed

function that adds 2 to its argument.

4.1.4.5. Function Application

(N x : number - number . (succ (succ x)) 5)

The function from the previous example is applied to 5. The final result %ill be 7.

4.1.4.6. Higher Order Function Abstraction

X f : (funtype number number) -. number. (f (f x))
This function takes another function as an argument and applies it twice to some free variable x. The 5.

actual parameter must be a function from numbers to numbers.
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4.1.4.7. Higher Order Function Application

(X f : (funtvpe number number) -- number. (f(f x)) g)

The higher order function from the previous example is applied to g, which must be a function from

numbers to numbers. Thus, function g is applied twice to the free variable x. The program is

equivalent to:

(g (g x))

4.1.4.8. Identity-Function Type Abstraction

X t: type-- ert. (emit Xx: t - t. x)

This function takes a type t and returns code (an ERT) that will become an identity function in the

next phase. The generated identity function will be specialized for type i, and may only be applied to

values of type t.

There are two function abstractions in this example: the outer function abstracts the type variable t in

one phase, and the inner function abstracts the variable x in the next phase. Note the emit surrounding

the inner function abstraction. The emit informs the Static-Phi Translator that the inner function

abstraction is to be created one phase later than the outer function abstraction. This is required

because the outer function abstraction is manipulating a type value that will be used in type checking

the inner function. Hence, during the phase when the outer function is created and applied, the inner

function is just treated as code (an ERT), and is type checked. The outer function is acting like a macro 'p

in returning the code (an ERT) instead of returning a function xalue (or closure).

The outer function cannot both compute the type t as a first-class %alue and return the inner function

as a function value (closure) durin the same phase. because. to enforce strong typing. the inner

function must be type checked dunng the phase before it is used as a function value Therefore. if the

emit vere omitted, a compiletime error Aould occur when the inner function %as being type checked.

4.1.4.9. ldentit% -Function Type Application

(X t : type - ert. (emit X x : t - t. x) number)

The identity-function generator of the previous example is applied to type number to generate an

idenuty function from numbers o numbers.
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4.1.4.10. General Type Abstraction

X t : type -- ert . (emit f: (funtype t t) - t . (f (f x)))

This function takes a type t and returns code (an ERT) that will become a function in the next phase.

The generated function will take any function from t to t and apply it twice to the free variable x.

This example demonstrates how types may be manipulated as first-class values during one phase, yet

become invariants of the next phase. The outer X creates a function that takes (and could manipulate)

a type as a first-class value. However, it returns code (an ERT) that has been type checked using this

type. This returned code happens to be the code for a function abstraction. (Incidentally, free \ariable

x is also type checked when the ERT for the function is generated and type checked.) Section 4.4.10

shows how this example would appear in various phases.

4.1.4.11. General Type Application "

(At: type-. er .(emit A f: (funtype t t) - t.(f(fx))) number)

The ERT-returning function of the previous example is applied to type number.

4.1.4.12. Macro Abstraction

X m: ert -. ert. (m (m x))

This function takes some code m (an ERT) and returns code that applies m twice to some free

variable x. ,

Note that the formal parameter m and the function's return type are both en. indicating that this

function will take code (an ERT) as its argument and return code (an ERT) as its result. This function-,

manipulates code. much like a macro.

4.1.4.13. Macro Application

( Am: ert - er. (m (m x))
(emit A i : number - number. (succ (succ i)))

The macro of the pre\ious example is applied to code which 'ill become a function to add to its

argument. Note that the actual argument is surrounded by an emit so that the (macro) function of the

pre\ious example will operate on it as code (an ERT) rather than as a function Nalue (or closure).

Thus. the outer function treats the inner function as code during one phase, and the inner function

becomes a function value (closure) during the next phase. If the emit were omitted. the outer function

could operate on the inner function only as a function value (closure), not as code. Section 4.4.1.3

.%%
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shows the IL code that results from translating and executing this example through the necessary

phases.

4.2. The Static-IL Language

As shown in the conceptual model (Figure 3-3), a Phi program is not executed directly, but is first

translated into a corresponding Static-IL program. The translator is defined in Appendix A. though

examples of translation are given in Section 4.4. This section describes the Static-IL language, which 1%

includes some unusual language constructs for creating and combining type-checked program

fragments in the form of ERTs.

Sy ntactically, Static-IL looks like an untyped lambda calculus. In fact Static-IL is typed, though type

declarations are not explicit. Under the programming method shown in Figure 2-2, the Static-IL

Machine is given only Static-IL expressions that are guaranteed free of runtime type errors or unbound

variables, and it generates Static-IL expressions only within valid ERTs.21 Since a vahid ERT triplet

includes a list of all the Static-IL expression's free variables and their types. and the type of the

expression, Static-IL expressions should be regarded as typed-22 We speak of Static-IL expressions as

being well typed in the same sense that one would speak of the object code for a compiled Pascal

program as being well typed, even though the type information from the source program is stipped

out after being checked. when the object code is generated.

4.2.1. Lexical Scoping, ERTs. and Macros

Static-IL expressions are lexically scoped. Nonetheless. if ERTs are explicid:, manipulated by the

programmer. just as %ith con% entional macros, it is possible to generate ne% expressions in Ahich free -"
%.:*

variables have become "captured" b, local declarations. Note that this is possible only in program.

fragments (ERTs) that are explicitly being construcied. as first-class data objects. When an expression

is c.iecaied that expression ik absolute% lexicallv (or staticall.) scoped. and nc such anomalies are

possible.

2 .abe ERT' as defined in Section 2:2

Joh. \:tctell and Daid MacQueen ha'e pointed out that it ma\ be better to rcgard thc Lmpiemenuauor. language as
cons ,un of he entire ERT trplet (rather thar, ust the Lbpression componenti. since the R (Re~uired-enmironmentl and T
( Tpc(mrporen of the ERT triplet contain thet\.e informauon for the E (Expresson) componer,
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The examples below illustrate how, in constructing an expression by manipulating ERTs as first-class
values, a variable can appear to become "captured". as with macros. In the following Static-Phi

program, x will evaluate to the ERT representing the outer z, thus causing the outer z to be placed into

the scope of the inner z.

X z: number - (funtype number number).
(eval
(X x : ert - ert.

(emit X z: number -. number. x)
z

)

For example, the following Staic-Phi program (which simply supplies actual parameters for the

functions in the preceding program),

(
(X z number - (funtype number number).

(eval
(X x : ert - ert.

(emit A z: number -- number. x)
z)

5

10

%ill be phase evaluated to produce the following Static-IL program,

(appli (applh (lambda z (lambda z z)) (quote 5)) (quote 10))

,Ahich e',aluates to 10. 4.,

The behavior illustrated above is quite intentional -- it was not an oersight -- though it is different e %

than one might nai\ely expect. The explicit intent here is to manipulate program fragments (ERTs) to

construct new programs with new semantics. This behavior is useful for program-,riting programs.

and is analogous to the behavior of con'entonal macros. Also. bear in mind that under no

circumstances can this behaior cause a runtime t pe error. An> attempt to cause a type mismatch in

the constructed code will be detected as a compiletime error, one phase before the constructed code a.
can be executed.

43

~~~~~~~ % r44 . .4 . 4 -% 4 4'



4.2.2. Conventional Lambda Calculus Operations

The following Static-IL primitives look and function exactly like the basic operations of an untyped

lambda calculus, written in the style of LISP: S.,,.

Any quoted expressible value. The value ev is simply returned, unevaluated. In
Static-IL constants appear as explicitly quoted values.

id An identifier. Its value is simply retrieved from the environment.

(lambda id expr) Function abstraction. Id is the formal parameter. expr is the function bodN. A
lambda abstraction evaluates to a closure, consisting of the current environment, the
formal par"-neter, and the function body. ,

(apply exprf expr )"
Function application. Expr evaluates to a function closure: expr is evaluated and
becomes the actual argument. The function application has already been type ,

checked during the previous phase.

(funtype exprd exprr
This operation is used to generate the type of a function. Subexpressions exprd and -'

exprr are simply evaluated in the current environment: the% evaluate to types.
These types. typed and type r , are used as the domain and range types of the function
type that is returned.

The returned function type is represented as a pair. tagged with the word fun:
<fun Iyped. tper>. For example. (fun number number> represents the t.pe of a
function that Lakes a number and returns a number.

(incr expr Increment. This operation returns the value of the expression plus one. There is no
corresponding operation in Static-Phi: incr is only included in Static-IL to make
the examples in Sections 4.1.4 and 4.4 more interesting. (In the examples of Section
4.4. 1ncr is used to implement the succ function. which is assumed to be supplied in ' -
the en\ ironment.)

Ihesc opcrations are not discussed further here
.-

4.2.3. Some Unusual Operations ".
%.-

. ,"pse of the con'. en::,.al Str:tc-!l :'cr2 :', .: abo, e :s tc l.o c '. " ,:,"nal computat-rs

to manipulate basic alues as in a lambda calculus. The onl. perceptible difference is that types are

als mampulated along Aith other basic \alues.

In contrast. the rest of Static-il's pnmiti~e operations do not look so con'entional. Their ultimate

4,* -- . . . % % % .
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purpose is to produce type-checked program fragments (ERTs). That is. the ultimate purpose of the

operations listed below is to type check and generate the conventional operations listed above. All of

the Static-IL constructs discussed below return ERTs as their result. Several of them involve a

parameter n, which is a constant determined during translation, that indicates how many phases to

wait before generating one of the conventional operations. The Static-Phi translator uses the emits and

evals to determine during what phase each of the various conventional operations should occur, and

generates the Static-IL program with the corresponding ns. The examples in Section 4.4. and in

particular the two examples in Sections 4.4.3 and 4.4.9. demonstrate what happens in successive phases..

how these language constructs work, and the purpose of these n parameters.

4.13.1. (deep-const C I n)

This construct always returns an ERT. Its purpose is to generate a type-checked quoted constant in

the proper phase, i.e. a Static-Il. program of the form -ev. C is any constant value, i is its type, and n is , -

the number of phases to wait before the constant is needed. Deep-const can be thought of as deeply

quoting the constant. (Constants are not assumed to be self-quoting.)

The operation deep-const is evaluated as follows. If ) 0, the ERT

<(,deep-const C i n-l). <>. ert> is returned: otherwise, (when n = 0). thL ERT <-c. <>. 1> is

returned. The idea is Iiat each time deep-const is evaluated, it basically just decrements n, returning

the same kind of ERT until n reaches 0. When nt reaches 0, then an ERT containing the quoted

constant and its type is returned. 23  "

4.2.3.2. (Check-funtype exprd exprr n)

Check-funtypo always returns an ERT. It is used to generate an ERT containing a funtype .

expression as its Expression component, when n is 0.

%

Both exprd and exprr will evaluate to ERTs: call them (r.,d.d> and <er. r "M -d r- -.-d-'.-.n.-7%

L.et us first consider the case when the number ,i is 0. in Ahich case a untype ERT will be returned.

Both i and t must be the type constant type. indicating that cr and ed will e'aiuaeC to types• dunng

,.e "ex. "hs . (It !s - "corp:etme' ' error .f , .her d Or !r are ".. " ,'e.) c".,. -he Ex-ressie"

:3 \ote that the cons ant s tpe is hidden until the plbae before the constant .,, .ed e\en ,hough the tvpc is dc:e',mined

,n. it2c cal. b\ the onginal Siauc-Phi program This rneank that if one tpe of constant i', %nner. ',nere some other I\pe is -
reqnre, th' tspc mismatch Ail] not be disco\ered '.ru the phac before the \alue o1 th coh a.: ", uid ha\e beer. ued ee.,
. ce.ain h', ouId he bcr Lr to report the error a. ear,. as pss ibe Ths :L.u e S menztoned ,, c: 1 Section -r
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',

%.,"""..." ".

,""-.'>



components ed and er are used to build the Expression component of the ERT that check-funtype will

return. For example, if ed and er are 'number and 'number, check-funtype will return an ERT with the

expression component (funtype 'number 'number).

Similarly, the resulting ERT'z Required-environment is formed by combining the Required-
environments rd and rr.This means that the free variables of the resulting expression include the free

variables of both of its subexpressions ed and er. However, the Required-environments must be

consistent: if a variable appears in both. it must have the same type, otherwise it is a "compiletime"

error.

Finall%, the Type component of the resulting ERT will be type "- funtype always returns a type.

If n ) 0. then this is not the right phase to generate a funtype expression; instead. anbther

check-funtype expression will be generated. and n will be decremented, as for deep-const. In this

case, both td and ir must be the type constant ert, indicating that er and ed will evaluate to ERTs

during the next phase. The resulting ERT will be constructed in a manner similar to the case when a

funtype expression is generated, except that the Type component of the resulting ERT will be ert ,

instead of type.

4.2.3.3. (check-lambda id exprd exprr exprbody

The check-lambda construct is analogous to the check-funtype construct: it is used to generate a

lambda Static-IL expression, and it always returns an ERT. However, check-lambda differs from

check-funtype in two important ways: it has a bound variable, id: and two of its subexpressions. exprd

and exprr. evaluate to types. while the other, exprbody. evaluates to an ERT.
,. .N

The check-lambda construct is evaluated as follows. First. the type expressions exprd and exprr are

evaluated in the current environment: call the resulting types td and tr.

Next. an ERT (id(idAt).t a ) is formed for the bound variable and its type. The Expression

component is simply the formal parameter: the Type component is the function's domain type (the

type of the formal parameter): and the Required-environment lists onl\ the formal parameter. This

ERT Aill be used in type checking the bod. of the function. iT'1

Now the body expression exprbody is evaluated in an environment augmented by the binding of id to

the F.RT (id.(d. t A)I>, and the result is a (type-checked) ERT (ebody, rbo yIbOy). To \erif. that the
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function body really does return the declared type, the Static-IL Machine must have i oy= I r; it is a

"compiletime" error if they are not equal.24

Because Static-Phi allows the programmer to write functions on ERTs -- like macros -- it is possible

that the body expression references a variable that has the same name as the formal parameter. id. but a

different type. (This is discussed and illustrated in Section 4.2.1.) Therefore, to ensure that any free

instances of id in the body really are the declared type, id is looked up in the required-environment

bdyto verify that its typ is d~rA

Finally, the Static-IL Machine constructs the ERT that is returned b) choc k-lIambd a. The Expression

component is (lambda id 6body ). The Required-environment component is just the required-

environment from the body rbody. with the formal parameter. id. removed325 The Type component is

<funI ' fr

4.2.3.4. (check- Chock- lambda idexprd expr r exprbody n)

This construct is used to generate a check-lIambda IL expression. Subexpressions expird. exPr r, and 4

exprbody all evaluate to ERTs: an ERT is always returned. Chock- chock 'lambda is analogous to

check-funtype in that it waits for the phase when n = 0 before generating and returning a

check-lambda expression. For other phases when n > 0. it just decrements n and returns another

check- check -Iambda expression in the resulting ER.

Recall that the purpose of the check-lambda construct is to generate type-checked lambda

expressions. Similarly. check-check- lambda is pro~ided for generating type-checked check-lambda

expressions. Remember that every expression must be guaranteed type correct during the phase before *

itris executed. But notice that two of the arguments to check-lambda are assumed to e'aluate to types. 'd

check-check- lambda does the t~pe checking necessary to guarantee that those two arguments will

indeed e'aluate to types.

At this point, the quesuon usuall% arises as to whether fuirther check -check -chock- or-

"Most languales uould not actuzil% require these types to be idenuca; Cut %%oul instead 7eqwre oni that t be a t' PC
tlhat ;s coercible to t r Such gratitous type con'ersions do no:. make a language fL.-damenialh more po~efur' hen 'the
programmer could just as well explici. call staridard t'pe-conmersion functions as needed Caercions are simpl% pro-tided for
cons enrence

2!. rhe formal parameter id is a free %anable in the function. hoc, but loking from outsde a! the entire lambda expresson
it is bound b% the lambda

A
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check-check-check-check-lambda constructs might be needed. Fortunately, they are not, and the

reason is that for check-check-lI ambda, all evaluated arguments evaluate to ERTs, and the Static-Phi

Translator ensures that every expression will initially evaluate to an ERT. That is. the purpose of

check-check-lambda is to ensure that all of check-lambda'S evaluated arguments will indeed be the

expected types. and it is required because two of check- atmbda'S arguments must be type expressions.

But all of check-check-lambda'S evaluated arguments must be ERTs. And since the Static-Phi

Translator only generates expressions that are guaranteed to evaluate to ERTs, no further

check-check-check-lambda is needed to ensure that the evaluated arguments to check-check-lambda

will be ERTs.

Check-check-Iambda is evaluated as follows. Subexpressions exprd and exprr are evaluated to ERTs.

If n > 0. their type components must be ert: othermise (when n = 0), their type components must be

type. Next, an ERT is constructed from the formal parameter, id, for use in type checking the body.

This is similar to check-lambda, except that the type of id is always ort. As with check-lambda, the

body expression exprbooy is evaluated to an ERT in an environment augmented by this binding. If

this ERTs required-environment lists the formal parameter id, its type should be ert. Finally. the

return ERT is constructed from the Expression and Required-environment components of the ERTs

obtained from evaluating check-check-lambda'S subexpressions. If n ) 0, n is decremented and

another check-check-lambda is generated for the Expression component. otherwise (when n = 0). a

check-lambda is generated for the Expression component. In either case, the Type component is ert.

The Required-environment component is generated by combining the subexpressions' required -J

enVironments, with the formal parameter removed. However. the Static-IL Machine must first ensure

that these required-environments are compatible: any identifier listed in any of the required-

environments must be listed with the same type in each of the subexpressions' required-environments.

4.2.3.5. (check-apply expr expr)

This construct is used to generate an apply Static-IL expression. Subexpressions expr and expr,

both e'aluate to ERTs: an ERT is returned.

This construct is different from the others in that the Static-Phi Translator does not determine, in

Id'ane. the phase in Ahich d furcun ippninau n *iii atuil ocui. Instuid. the check-app y

operation monitors the Type component from its first argument to see when it \kill become a funcuon

rather tan an ERT. If it will be a function, the functions domain type is checked against the tvpe of

the actual parameter: otherwise, another check-apply is generated.

"_-t
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Chock-apply is evaluated as follows. First. subexpressions expr, and expr are evaluated to ERTs

(ef.r.if> and <e,,r,. If if is a fun type, <fun t d' t ,> then 'd must equal t.. and an apply ERT is

returned with Type component ir* Otherwise, if must be ert (it is a "compiletime" error if it is not).

and another check-apply ERT is returned with Type component ert. In either case, the Required-

environment component of the resulting ERT is formed by combining rf and r1 , which must be

consistent. Finally, it is a compiletime error if if is ert but i. is not ert, because this means that the

function argument would evaluate to some final basic value (such as a number or boolean) in the next

phase, whereas the function expression will evaluate to another ERT.

4.2.4. Efficiency of Static-IL

Given that the Static-IL language includes both compiletime and runtime operations, how efficiently

can it be processed? Must it be less efficient than a conventional lambda calculus? Might it be more

efficient? Without focusing on the details of any specific implementation, we can make some general

observations about Static-IL's inherent efficiency. Since the Static-IL Machine is used both for

compiletime and runtime. let us examine these roles separately.

On one hand, when the Static-IL Machine is playing the role of runtime, the operations performed

are just the simple operations listed in Section 4.2.2. These are in fact identical to the operations of a

conventional untyped lambda calculus, and hence can be just as efficiently processed.

On the other hand, when the Static-IL Machine is playing the role of compiletime. it may be more

efficient than a conventional compiler because it can use the basic operations of the runtime machine

directly instead of simulating them. For example. constant expressions are evaluated directly at

compiletime b) our single Static-IL Machine. whereas a con entional compiler must ealuate them by

simulating the action of the runtime machine.

Henc,,. Lhe Static-IL Machine can be just as efficient at performing runume operations as a lr

con'entional runtime machine, and may be more efficient at performing compiletime operations than

a conventional compiler.

1W~
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4.3. Environments for Static-IL Programs %

As discussed in Section 2.2.5, environments supply bindings of identifiers to values, for all of a

program's free variables. In our simple model, the environment provides the input for a Static-IL

program. and a separate environment must be provided for each phase used. This section provides

some insight into the purpose of these environments.

4.3.1. Static-Phi Program X %..

Let us begin by considering a Static-Phi program consisting of only the single identifier. x. This

Static-Phi program will be translated to the ERT <x. <x.ert>, .rc>. The Expression component is

simply x: the Required-environment component is < x, @rt>, meaning that the only free variable in the

expression is x and its type is ert: and the Type component is ert. because the expression x* will

evaluate to an ERT. .

In order to evaluate the Expression component x we must provide an environment that satisfies 2 the

Required-environmenE. In this case. the environment must include a value of type ert for x. As _

mentioned in Section 3.3.4. every identifier starts out as type ert, that is, during the first phase. evern

identifier must be bound to an ERT. Let us consider some of the possible ERT values that A e might

provide for x. .

Suppose ve supplied the ERT value (z. <xer), .rt> as the value of x in the environment. Then.

in the first phase. the expression x would simply evaluate to this value -- <x. <xert>. ert>. But this S

is precisely the ERT that resulted from translating the original Static-Phi program! In effect. has

simpl. e'.aluatcd to itself. This is kno'kn as the default EPT for x.

4.3.2. Definition: Default ERT

For am i aenfier id. the ERT -rid. <id ert. ert, is called the default ERTfor this identifier.

• . %=-.

S i B dcfned in Secion

%~~ %

%~~~ % %..-%..

, v? we -P VV %...

-, ., '.'. . , .. .,%,: . . -. . . . , ..- - -.. -. -



4.3.3. The Purpose of Default ERTs

Default ERTs are used to pass identifiers through some number of phases before fixing their types.

(Fixing an identifier's type is discussed below in Section 4.3.4.) They are called "default" ERTs

because a command interpreter would normally provide a default ERT binding for each identifier of

type ert that was not to be fixed to some other type.

4.3.4. Fixing the Type of an Identifier

Suppose that we supply a slightly different ERT value for x in the environment:
I

<x, (x, number>. number>. This looks similar to the default ERT, but the type of x is given as number

in the Required-environment, and Expression's result type is then number also. If we supply this ERT

as the value for x in the environment. then, of course, x evaluates to this ERT --

<x. <x.,number>. number>. In this case, even though the Expression component is again x. the type of

x is now given as number, that is, x must be bound to a number in the next phase. Whereas the default

ERT simply caused x to evaluate to itself, this ERT fixes the type of x to be type number.

4.3.5. Fixing an Identifier as a Function Type

The last example fixed x as type number. We could just as well fix it to be some function type. For

example, if we provided the following ERT value for x in the environment, %

&x. <x.(fun number number)). (fun number number)> %

then in the next phase, x must be bound to some function from numbers to numberS.

4.3.6. Fixing an Identifier as a Macro

"e ha% e just showed hok the t)pe of x could be fixed as a function from numbers to numbers. If 1Ae

instead fixed the type of x as a function from ERTs to ERTs. by suppl ing the follok ing ERT \alue for-4

in the environment,

<x. <x.(fun ert ert) , (fun ert ert)>

then x would act as a macro in the next phase. That is. in the next phase. x would be bound to some

function that takes code (an ERT) and produces code (an ERT) as its result.

51 d
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4.3.7. Fixing the Value of an Identifier

In the last three examples. x was bound to an ERT that fixed the type of x for the next phase.

requiring xto be bound to some number or a function during the next phase. Thus. the iype of x was

fixed for the next phase. but the value of x was not fixed for the next phase. Suppose we had instead I,

bound x to the ERT ( '5. <>, number>. In this case. not only is the type fixed for the next phase, but

,he value is a constant: s. Since the Expression component of this ERT has no free variables, the

identifier A does not even appear in the Required-environmenL

4.3.8. Other Possibilities

Of course. these are not the only interesting ERT values that might be bound to x. For example.

suppose the ERT <y. <y.ert>. rt> were provided as the value of x. This ERT is identical to the

default ERT for x except that it uses the identifier y instead. This, in effect, renames x to y for the next

phase.

So far we have discussed some of the ERTs that might be supplied in the environment as values of a

Static-IL program's free variables. Of course, free variables of other types, such as number or (fur

number number), would have to be bound to values of those types in the environment.

%"S4.3.9. What Values to Supply in What Phases .

S.%

Since a different environment is supplied for each phase, the question anses as to wkhat each of these

en% ironments should include. Of course, the Required-environment specifies the t.ipes of the %alues

that must be provided m the en'ironment- but it does not tell th( purposes of these Nalues. In --
particular. Lhere %ere several different kinds of ERT %alues discussed above that might be used for an

idenuficr of:ype ert. How do %ke knoA which is appropriate? % %

Ibe ar.sier depends on the program and the programmers intent. E'er- program Aill be expec::n-

certain kinds of inpuL via the cn\ironment in certain phases. Information on the kind of input '" .
"

expected in each phase (other than its type) must be provided as external documentation. in the same 5

%%z;- th ;: :,h- pur.p o.s.e.s o.f a c . . program _ ;npus must be d ocu... d.

Therc is. hovexer. a pattern to the types of the free variables that one %ould generall\ expect to see ,
in ,afous phases. Since e'er.. identifier starts out t:pe ert (as mentioned in Section 3.341 the defaubt

FRI ai;d initiall\ he used for that identifier. Then. dunng some phase the type of this identifier \ kil

%.
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be fixed to some basic (non-ERT) type, as described above, and finally during the next phase the

identifier will have a value of that basic type. Thus. pertinent documentation on this identifier should

specify during what phase its type should be fixed.

The examples in Section 4.1.4 help provide an understanding of how various phases are used and

what happens in each phase.

4.4. Examples of Translation and Evaluation

This section shows examples of translating all of the Static-Phi programs shown in Section 4.1.4 to

Static-IL programs, and executing the resulting Static-IL programs through phases. The most straight-

forward and informative examples with which to begin are the two that involve creating and applying

an identity function in Sections 4.4.3 and 4.4.9. The Static-Phi Translator and Static-IL Machine are

formally defined in Appendix A.

In the examples below, ERT values (e,r,) are displayed in a LISP-like form:

(e rt)

Similarly, environments are displayed as LISP-like lists. Each element of the environment lists an

identifier-value binding, which is in turn displayed as a LISP-like list. for example:

(id value)
(ia2 value2)

(id, value.)

Finally. Required-environments arc also displayed as LISP-like lists. Each clement of the Required-

en% ironment lists an identifier-type pair. which is in turn displayed as a LISP-like list. for example:

(i tpe 1 )
1 t)pe,)
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4.4.1. F Twice

This example is complicated by the need for a (non-empty) envirornent. Therefore. the reader is

advised to first study the example of Section 4.4.3. Identity Application. which inv'oI'es no free

variables.

(f (fx0

-------------- Result of Translation------------------

(check-apply f (check-apply f x)) Expression
((f ert) (x ert)) Req-env
ert Type

---- ---- ---- --- Environment for Phase I1 - - - -- - - - -

(x ( ((xnumber)) number))
U(f ((f (fun number number))) (fun number number)))

------------------ Result of Phase I ---------

(apply f (apply f W) Expression
((f (fun number number)) (x number)) R*Q-env

number Type pt

--- --- --- --- --- Environment for Phase 2 - - - - - - - - -

(f (closure z (incr zN ~ V

44
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A

4.4.2. Identity Abstraction

See the example of Identity Application in Section 4.4.3.

A x: number -* number'. x

Result of Translation ----------------

(check-check-lambda Expression
.0

(deep-const number type 0)

(deep-const number type 0)

x
0 !,

() Required-environment *,

ert Type

------------------ Environment for Phase 1 ------------------

()
---- ---- ---- --- Result of Phase 1 - - - -- - - - -

(check-lambda x 'number 'number x) Expression
() Required-environment 6

ert Type

------------------ Environment for Phase 2 ------------------

------------------ Result of Phase 2 --

(lambda x x) Expression
Required-environment

(run nurnOer number; Type

------------------ Environment for Phase 3 ------------------

------------------ Result of Phase 3 ------------------

,closure x x()

%W ~~~. .W r ' ...%
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4.4.3. Identity Application

This is the best of these examples to study first.

The correspondence between the Static-Phi program and the ERT that results from translation

(shown below) is as follows. To dispense with the easy parts first, the Required-environment

component of the ERT is empty, because there are no free variables, and the Type component is art.

indicating that the result of the first phase will be an ERT, as it always is. In the Expression OP.
component, the function application of the original Static-Phi program has been translated to a

check-apply Static-IL construct. The X abstraction was translated to a CheCk-Check-iambda, using the

formal parameter name; the type constants number and number were translated to deep-const forms.

listing the number of phases to wait as 0; and the identifier, x, supplied as the function body. was

simply translated to itself. x. The generated check-check-lambda lists the number of phases to wait as

o. Finaily, the constant 5 that was given as the actual argument was translated to another deep-const

form. listing the number of phases to wait as 1. Note that the deep-consts generated for the number

type constants have one fewer phases to wait than the deep-const generated for the function's actual -,.

argument. 5. This is because the type values will be needed to type check the function application, one

phases earlier than the function is applied to the constant 5.

The progression through phases is as follows. During the first phase, the types of the functions type

expressions (number and number) are checked to ensure that they really are type expressions and not.

say. numeric expressions. Upon doing this check, the check-check-lambda produces a check-lambda.

During the second phase, these type expressions will be evaluated to the type values number and number

and these t:-pes will be used to generate a type-checked lambda. In turn, the check-apply \erif es that .
the ty pe of the actual argument matches the function's declared formal parameter type. and generates

an apply form. Finall, in the third phase. the function is applied to the constant s to produce a result'%

Of 5.

..%

The or ginal Static-Phi program and the progression through phases are shok n below. Compare shis

example vxith the example in Section 4.4.9.

% % ,%;

% %
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--.-.----.--------- Static-Phi Program .............

(X x : number - number. x t)

---. --------- ------- Result of Translation ------------ ------

(check-apply Expression:

(check-check-lambda
x Formal parameter 'J

(deep-const number type 0) Domain type

(deep-const number type 0) Range type
x Expression body

0 Phases to wait

(deep-const 5 number 1) Actual argument

() ;Required-environment

ert Type

------------------.. Environment for Phase I ------------------

------------------ Result of Phase I -----------------

(check-apply Expression

(check-lambda x 'number 'number x)
(deep-const 5 number 0)

() :Required-environment
ert Type

------------------ Environment for Phase 2 ------------------

---------- - ------- Result of Phase 2 ------------------

(apply (lambda x x) '5) Expression *.,

. Required-environment

number lype

Environment for Phase 3 ------------------ 4;.%

5,7,
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------------------ Result of Phase 3 ------------------

4.4.4. Function Abstraction

X x: number - number. (succ (succ x))

------------------ Result of Translation ------------------

(check-check-lambda x txpression

(deep-const number type 0)

(deep-ccnst number type 0)

(check-apply succ (check-apply succ x)) 
S..

0

((succ Ort)) Req-env

art Type

..................- Environment for Phase 1 ----------

(Succ (SuCc ((succ art)) ert))

.................. Result of Phase I ------------------

(check-lambda x 'number number Expression

(check-apply suCc (check-apply SuCC x))

((succ ert)) Req-env

art Type

Environment for Phase 2 ------------------

(succ (Succ ((succ (fun number number))) (fun number number))

- .----------------- esult of Phase Z ..................

,lambda x (apply succ (appl: succ x; Expression

((SuCC (fun number number,') Reg-env

(fun number number( Tve

%-. "

S..,
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------------------ Environment for Phase 3 "-- -

(succ (closure z (incr z) ()))

.v
; - - - - - - - - Result of Phase 3 -------------- --- '- %

(closure
x

(apply succ (apply succ x))

((succ (closure z (incr z) ())))

4.4.5. Function Application

(N x number - number. (succ (succ x)) 5)

------------------ Result of Translation ------------------

(check-apply Expression

(check-check-lambda

x
(deep-const number type 0)

(deep-const number type 0)

(check-apply succ (check-apply succ x))°

(deep-const 5 number 1)

((succ ert)) Req-env

ert Type " .

..................- Env iro nm e n t fo r Phase 1 -- -

(succ (succ ((succ ert)) ert)) .

ii
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------------------ Result of Phase I ------------------

(check-apply Expression

(check-lambda

x *

'number

'number

(check-apply succ (check-apply succ x))

(deep-const 5 number 0)

((succ ert)) Req-env

eart Type

.------------------ Environment for Phase 2 ------------------

(succ (suCc ((suCc (fun number number))) (fun number number)))
'S

.--------------- - Result of Phase 2 ------------------

(apply (lambda x (apply succ (apply succ x))) '5) ; Expression

((succ (fun number number))) ; Req-env %' /

number Type

------------------ Environment for Phase 3 ------------------

(succ (closure z (incr z) ()))

------------------- Result of Phase 3 ------------------

7
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4.4.6. Higher Order Function Abstraction

X ft: (funtype number number) - number. ( (f x))

------------------.. Result of Translation ------------------

(check-check-lambda Expression

f i
(check-funtype

(deep-const number type 0)

(deep-const number type 0)

0

(deep-const number type 0)

(check-apply f (check-apply f x))

0

((x ert)) Req-env

ert Type

%

------------------ Environment for Phase I ------------------

(x (x ((x ert)) art))

------------------ Result of Phase 1 ------------------

(check-lambda Expression

f

(funtype 'number 'number)

'number

(check-apply f (check-apply f x))

((x ert)) Req-anv

ert

................... Environment for Phase 2 ------------------
•. .,. ..

(x (x ((x number)) number))

0
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--.--------------- Result of Phase 2 ------------------

( (lambda f (apply f (apply f x)) ;Expression
((x number)) R eq-env [

(fun (fun number number) number) Type

------------------.. Environment for Phase 3 ------------------

(x 5)

------------------ Result of Phase 3 ------------------

(closure f (apply f (apply f x)) ((x 5)))

4.4.7. Higher Order Function Application

(A f: (funtype number number) -- number. (f(f x)) g)

------------------. Result of Translation ------------------

(check-apply

(check-check-lambda

f

(check-funtype

(deep-const number type 0)

(deep-const number type 0)
0

(deep-const number type 0)

(check-apply f (check-apply f x))
0

4%9

((x ert) (g rt)) Req-env

ert Type

---------.. ---------. Environment for Phase I -- %

(f (f ((f ert)) ert))

(g (g ((g ert)) ert))

II Z
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----------- ------ Result of Phase I ------------ ------

(check-apply ; Expression

(check-lambda

f
(funtype 'number 'number)

number

(check-apply f (check-apply f x))

((x ert) (g ert)) Req-env ""

ert Type

.%

------------------ Environment for Phase 2 ------------------

(x (x ((x number)) number))

(g (g ((g (fun number number))) (fun number number))) ,0

------------------ Result of Phase 2 ------------------

(apply (lambda f (apply f (apply f x))) g) ; Expression

((x number) (g (fun number number))) Req-env

number Type

------------------ Environment for Phase 3 ------------------

(x 5) 
.

(g (closure z (incr z) ()))

.................. Result of Phase 3 ------------------

4l
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4.4.8. Identity-Function Type Abstraction

X t type - ert. (emit A x : t - t . x)

------------------ Result of Translation ------------------
( p

(check-check-lambda Expression

t

(deep-const type type 0)

(deep-Const ert type 0)

(check-check-lambda x t t x 1)

0

() Req-env
ort Type

------------------. Environment for Phase I ------------------

()

------------------. Result of Phase 1 ------------------(

(check-lambde t *type 'ert Expression

(check-check-lambda x t t x ) -

() Req-env 9

ort Type

.................. Environment for Phase 2 ------------------

(9,

---------------... Result of Phase 2 ------------------

(lambda t (check-lambda x t t x . Expression
R .gq-env

!fur type ert) Type

E---------------- Environment for Phase 2 N.......
------------------- Result of Phase 3 ------------------
closure t icheck-Iamnbda t t x (

%.-
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4.4.9. Identity-Function Type Application

This example requires one more phase than the example of Section 4.4.3. If we view what happens

in the various phases in terms of the original Static-Phi program, phase 1 checks the types of the type

expressions in the outer X abstraction, phase 2 type checks the outer X abstraction and its application.

and the types of the type expressions in the inner X abstraction; phase 3 applies the outer function to

the actual argument and produces an ERT for a type-checked identity function on numbers; and

during phase 4 this identity function becomes an actual function value, or closure, that could ha~e been

applied to a numeric argument. JW

--------------- Static-Phi Program -----------------

(X t t.1e - en. (emit X x: t -' t. x) number)

------------------ Result of Translation ------------------

(check-apply Expression

(check-check-i ambda

t
(deep-const type type 0)
(deep-const ert type 0)
(check-check-lambda x t t x 1)

0

(deep-const number type 1)

() Req-env

art Type

Environment for Phase I ------------------

I
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---- ---- ---- --- Result of Phase 1 - - - -- - - - -

(check-apply
(check-lambda

~type

*ert

(check-check-lambda x t t x 0)

(deep-consi number type 0)

ert Type

---- ---- ---- --- Environment for Phase 2 - - - - - - - - -

-- -- - - - - - - Result of Phase 2 -- -- - -- - -- -

(apply (lambda t (check-lambda x t t x)) 'number) ;Expression

() Req-env
*rt Type

*---------------------niomn o hs
En io mn(o)h s 3 - - - - - - - - -

*---------------------Result of Phase 3 ---------

(lambda x x) Expression

Req-env
(fun number number) Type

--------------- Environment for Phase 4 ---------

--- --- --- --- --- Result of Phase 4 - - - - - - - - -

closure x x

* -- -~P:%
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4.4.10. General Type Abstraction

X t : type -~ ert . (emit X f : (funtype t t) t .t (f (f x)))

---------- Result of Translation ----------

(check-check-lambda Expression
t

(deep-const type type 0)
(deep-const ert type 0)
(check-check-lambda

f

(check-funtype t t 1)

t

(check-apply f (check-apply f x)) 6~

0

((x art)) Roq-env

ert Type

-------------- Environment for Phase----------------------

(x (x ((x art)) art))

-- -- - - - - - - Result of Phase 1 -- - - - -- - - -

(check-lambda Expression

t

' type

* art N

(check-check- lambdaF.

(check-funtype t t 0;

t

(check-apply f (check-apply f x))

((x art)) *Req-ony

art *Type%

lop... .%.... ... . . . . . . ....
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-...............- Environment for Phase 2 ------------------

(
(x (x ((x art)) art))

------------------ Result of Phase 2 ------------------

(lambda Expression

t

(check-lambda
f 

.~

(funtype t t)

t

(check-apply f (check-apply f x))

((x art)) Req-anv

(fun type art) Type

------------------ Environment for Phase 3 ------------------

(x (x ((x number)) number))

------------------ Result of Phase 3 ------------------

(closure
t

(check-lambda f (funtype t t) t

(check-apply f (check-apply f x))

((x (x ((x number)) number)))
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4.4.11. General Type Application

(X t :type - ert .(emit X f:(funtype t 0--t(f fx)0) number)

---- ---- ---- --- Result of Translation - - - - - - - - -

(check-apply Expression
(check-check-lambda

t%
(deep-const type type 0)
(deep-const ert type 0)
(check-check-lambda

f
(check-funtype t t 1)

t
(check-apply f' (Check-apply f x))
I

0

(deep-const number type 1)

((x art)) Req-env

art Type

---- ---- ---- --- Environment for Phase 1 - - - -- - - - -

(x (x ((x art)) art))

%.
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................... Result of Phase I -----------------

(check-apply Expression
(check-lambda

t
, type

* Ott 'era
(check-Check-Tambda

(check-funtype t t 0)

t
(check-apply f (check-apply f x))
0%

(deep-const number type 0)

((x Ott)) Req-env

Ott Type

'

..................- E n v i r o n m e n t f o r P h a s e 2 ------------------

(x (x ((x ort)) ort)) 46

.................. R e s u l t o f P h a s e 2 ------------------

(apply Expression

(lambda'.

t J.~

(Check-lambda "a

f -

(funtype t t)

t
(Check-apply f (Check-apply f x))

number

((x ert)) Roq-env
er. Type 4

------------------- Environment for Phase 3 ----------------- %

(z (x ((x number)) number),,

NN'0 1I
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------------------ Result of Phase 3 ------------------

(lambda f (apply f (apply f x))) Expression

((x number)) Req-env

(fun (fun number number) number) Type

.------------------ Environment for Phase 4 ------------------

(x 5)

------------------- Result of Phase 4 ---------

(closure f (apply f (apply f x)) ((x 5)))

4.4.12. Macro Abstraction

X m ert - ert . (m (m x)) 
V.,

.------------------ Result of Translation ------------------

(check-check-lambda Expression
m

(deep-const ert type 0)

(deep-const ert type 0)

(check-apply m (check-apply m x))

0 "

((x ert)) Req-env

ert Type 
%

------------------ Environment for Phase I ------------------
'p

(x (x ((x ert)) ert)) 
S

..............- Result of Phase I ------------------

(check-lambda m 'ert 'ert Expression 
V%. %

(check-apply m (check-apply m x))* 1

((x ert)) * Reg-env

ert T ype 
-,

* .5°W
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- - -... .. .. .. .. ..(xEnvironment for Phase 2 ------------------

(x (x ((x ert)) ert))

------------------ Result of Phase 2 ------------------

(lambda m (check-apply m (check-apply m x))) Expression

((x ert)) Req-env

(fun ert ert) Type

------------------ Environment for Phase 3 ------------------

(x (x ((x ert)) ert))

------------------ Result of Phase 3 ------------------

(closure

m
(check-apply m (check-apply m x))

((x (x ((x ert)) ert))) 4"

-
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4.4.13. Macro Appication

(X m: ert ert. (m (m x))
(emit X y" number -. number. (succ (succ y)))

------------------ Result of Translation - -.

(check-apply ;'Expression

(check-check-l ambda

m

(deep-const ert type 0)

(deep-const ert type 0)

(check-apply m (check-apply m x)) S

0

(check-check-lambda 

.' -,

(deep-const number type 1)

(deep-const number type 1)

(check-apply suCc (check-apply succ y))

((x ert) (suCC ert)) Req-env

art Type

..................- Environment for Phase I - - -

(Succ (succ ((succ ert)) ert)) %A

(x (x ((x errt,) e r )) 
#

-
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- . . .- ----- ---- R e s u l t o f P h a s e I ..................

(check-apply Expression
(check-lambda

m
,ert

ert

(check-apply m (check-apply m x))

(check-check-lambda

y
(deep-const number type 0)
(deep-const number type 0)

(check-apply succ (check-apply succ y))

0

((x ert) (succ ert)) Req-env

art Type

------------------ Environment for Phase 2

(succ (succ ((sucC ert)) ert)) )%

(x (x ((x ert)) ert))

------------------ Result of Phase 2 -------------------

(apply Expression
(lambda m (check-apply m (check-apply m x)))

(check-lambda

y
number

'number

(check-apply succ (check-apply succ yi'

((x ert) (succ ert)) * Req-env

ert Type

.................. E n v i r o n m e n t f o r P h a s e 3 ------------------

(X (x ((x number)) number))

(sUCC (SuCC r(Succ (fun numbor nuriber'\r (fun number number

'%
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------------ .Result of Phase 3 ------------------

(apply Expression

(lambda y (apply succ (apply succ y)))

(apply (lambda y (apply succ (apply succ y))) x)

((succ (fun number number)) (x number)) Req-env S

number Type

.------------------ Environment for Phase 4 ------------------ P%

(x 5)
(suCC (closure z (incr z) ())

------------------.. Result of Phase 4 ------------------

g
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Chapter 5
Using Phases for Partial Evaluation

This chapter describes how phases might be used to perform partial e~aluauon. In this approach, the

phase for a particular subcomputation is not denoted in the source program or determined when the

program is translated. but is determined dynamically by the environment supplied for each phase.

This approach has not been fully explored, and is open for future research, but we demonstrate how it

might proceed by describing a source language. Dynamic-Phi. and the beginnings of an

implementation language, Dynamic-IL. There is no formal semantics given for these languages, since

theN are not fully developed.

5.1. The Dynamic-Phi Language

The Dynamic-Phi language is identical to the SEauc-Phi language described in Section 4.1. except it

does not pro%)de the emit and eval constructs or the type constant ert: hence Dynamic-Phi is not

discussed further here. Instead of allowing the programmer to explicitly manipulate ERTs under

program control, the system uses ERT values transparently. to represent the results of a partal

e\ aluation.

5.2. The Dynamic-IL Language

A Aith the Static-IL language. Dynamic-IL looks like an unt.ped lambda calculus because t:,pe

declarations are not explicit. but in fact it is suongl, tcped. In fact, almost all of the constructs of

S.,tic-lL_ and D. namic-IL look similar though the semanucs of constructs that manipulate ERT \alues

ire necessaril, different. as discussed in Section . 'I.'9
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5.2.1. Conventional Lambda Calculus Operations

Dynamic-IL has the following simple operations that look like a conventional lambda calculus

written in the LISP [McCarthy 66] style. These function exactly the same as in Static-IL. They are:

. ev Any quoted expressible value.

id An identifier.

(l ambda id expr ) Function abstraction.

(apply expr, expr )
Function application.

(funtype exprr exprd )
The type of a function. As with Static-IL. the returned function type is represented
as a pair. tagged with the word fun: <fun typed' 1),per>.

These operations are not discussed further here.

5.2.2. Other Operations

All but one of the other operations look similar to operations in Static-IL, except that the operations

below lack the n parameter, and hence their the semantics are somewhat different. In Static-IL, the n

parameter specified how many phases to wait before generating one of the conventional operations.

and this was determined statically, during translation. But in Dynamic-IL. the determination of when

to generate one of the conventional operations is done dynamically by each of the operations listed

below. Compared with Static-IL. Dynamic-IL is missing one operation. deep-const. and contains one

ne'k operation. hold. Deep-const is unnecessar' because there is no a priori determination of when a

constant will be needed: hold iS now used to pass a value computed in one phase. to the next phase.

.2.2.1. (hOlC I1 expr)

HoId alwas returns an ERT. The argument i may be an-, value of type * ype -- it is not an expression

-- and expr is an expression that evaluates to a value of that type. Hold simpl. evaluates expression

e.ypr to 91me value e,. and returns the ERT, 'e",. ,". ,. Thus. e'en though exp, is e'aluated during

this phase. its value is not used until the next phase. %

HoId is typically used to synchronize tuo %alues that are needed by an operation. Each of the CheCk -

operations must detect this and generate ho ls a, needed. For example. "he funtype operation has t\o

S% % .% % .. .. .



subexpressions that must evaluate to types. During the phases before the subexpressions evaluate to

types. they will evaluate to ERTs. What if one of the subexpressions is ready to evaluate to a type

during some phase, but the other is still going to evaluate to an ERT. and will not evaluate to a type

until the following phase? In that case. the subexpression that is ready to evaluate to a type can be

evaluated, and the hold operation can be used to pass the resulting type value on to the next phase,

when the other subexpression will also evaluate to a type. Thus check-funtype can force both

subexpressions to return ERTs during one phase, and during the next phase, the funtype operation will

have both typc values as needed. Section 5.2.2.2 explains specifically how this works for the

check-funtype operation. Other check- operations work analogousl.

5.2.2.2. (check-funtype exprd expr)

Check-funtype always returns an ERT: it is used to generate a funtype ERT. However, unlike in %
Static-IL. check-funtypo will not necessarily generate a funtype expression during this phase. If its

arguments will not be ready to be fully evaluated to types during the next phase (that is. if its

arguments are still going to evaluate to ERTs). another check-funtype expression is generated. This is

similar to the %ay check-apply in Static-IL generates an apply if the function arguments will be read)

in the next phase. and a check-apply if not.

Check- funtype is evaluated as follows. Both subexressions expr r and expr, are evaluated to ERTs.

call them ' r >.d <e and t If both td and r are type. a funtype expression is generated. as in

Static-IL. If both i and tr are att. the returned ERT will contain a check-funtype expression: the

Expression component will be (check-funtypo ed er): the Required-entironment component %ill be

the combination of rd and r which must be consistent (as defined in Section 4.2.3.2): and the Type

component will be Ott.

Note that. for a runtypo expression to be generated. both 'd and r must be type. indicating that ed

and er 'Ai11 caluate to tpes. Since een expression starts out (after translation) e\aluating to an FRT.

in effect t, jnd r Ail] start out as ert and will become type dunrng some tater phase. But Aha: if one

of the chec-funtype'5 subexpressions is read\ to exaluate to a type before the other is read\' That is.

%khat if either I or ir is type. but the other is ert0

In this case. %e can simpl\ alloA the t% pe salue to be computed dunng the next phase, but use a hold

expression to pass the result on to the next phase. to be read. dunring the phase when the other

subcxprcsson is also read% to e\aluate to i t.pe. Thus. 4 choCk-funtype is generated as before, but a

hold i imerted to psss the t~pc \alue to a subsequcnt phase as a constant. For example. if i IS typo

and i r is *,t .he resulung Expression cvmponent ri!l be check-fontype (hel type f C r'-

% % .. . . . %'
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It is a "compiletime" error if either td or tr is not type or ert.

5.2.23. (check-lambda idexpr, exprr eXPrbody

Analogous to check-funtyp. check-lambda is used to generate a lambda but should generate another

check-lambda if the body expression will not be ready during the next phase (that is, if the body

expression evaluates to an ERT whose Type component is ert). If another check-lambda is generated.

the type expressions %ill simply be the quoted type values that were computed during this phase.

The implementation Of check-lambda is not as straightforward as it may at first seem: its discussion is

postponed to Section 5.3.

5.2.2.4. (check-check-lambda idexprd exprr exprbody

This construct is handled straightforwardly in a manner analogous to check-funtype above. After

evaluating exprd and exprr, an ERT binding (with Type component art) is created for the formal

parameter. and the body expression exprbody is executed in an environment augmented b.% this

binding. If both expr and exprr have evaluated to ERTs whose Type component is type. a

check-lambda will be generated. Otherwise another check-check-lambda should be generated. mith

hold used as necessary.

5.2.2.5. (check-apply exprf expr,

This construct is evaluated as in Static-IL except that hoid may be inserted as needed if either the

function or te argument is ready before the other (that is. if one will still be an ERT Ahen the other

will be a function or non-ERT value during the next phase).
%,"...l

5.3. Problems in Implementing Check-Lambda

Before discussing these issues. it should first be noted that there are se~cral vka.s of paruall%

e aluating function calls. Beckman et al. [Beckman '6] prcu ide a good outine of the \arious methods

We % ill restrict our attention to the simplest choice.

Suppose we have the following lambda abstraction in D\namic-Phi. which has free 'anable f:

A x" number -- number. (f

9



And consider the corresponding Dynamic-IL program:

(Cheek-lambda x 'number 'number (check-apply f x))

where f is type ort.

Now. our goal here is to come up with a method of implementing the check-lambda operation. As a

general outline, it should proceed according to the following steps:

1. Exaluate the two typo subexpressions. In this example, they are 'number and ,number. and
they simply evaluate to the type values number and number. NP

2. Decide on a suitable ERT binding for the formal parameter, and add this binding to the
environment. In our example. we must bindx to the proper ERT. and add this binding to
the environment. (An ERT binding for r will already be in the environment.)

40-
3. Evaluate the body expression to an ERT in this new environment. In our example, we, %

must evaluate the check-apply to an ERT.

4 Using the ERT that resulted from evaluating the body expression, construct and return
either a lambda ERT. if the body is ready to be evaluated to some basic non-ERT value in
the next phase: or a check-lambda, if the body must evaluate to another ERT in the next ,
phase.

inus. in our example. the result of step 3 will either be an apply ERT (if the bod. is read\ to

caluatc to a number), such as the following (call this eriA):

erlA
(apply f X) Expression

((f (fun number iumbor)); . Reeudred-onvironment .0

numb
*
, Type

check-apply FRI of the h)od. must still c, aUjIC to another FRTi uch a Jc hkflo (n n (call L -
"V..

eriB
'ch.ck-apply f I tipression

* ( ef't .Peq..ed-onvirrnnCT .'.a

art .TypeN

tli !r 'PC icmponcnt ot crr4 indicates that it :, rcad-, o e\ .luawC to 1 ounr A crcas the

-,,=pornt (4 eriB indlcaIS 0it t A ill c-, alu-te to nothet FRI .%

.0% %'
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Finally. the result of evaluating the check-lambda (i.e. the result of step 4) should either be a lambda

ERT, such as the following (call this ert/):

Sertl
(lambda x (apply f x)) Expression

((f (fun number number))) Required-environment

(fun number number) Type

or it should be a chock-lmbda ERT. such as the following (call this ert2): 5%

( ;err2,
er-ft

(check-lambda x (check-apply f x)) ; Expression .

((f ort)) Required-environment

ert Type
)%

%1.

That is. the result of step 4 should be eril if the result of step 3 is ertA. whereas it should be ert2 if the

result of step 3 is eriB. That much is straightforward. The difficulty is this: What ERT binding should

we provide for x in step 2?

If the result of step 3 will be ertA, then we should supply a binding of x to the ERT (x (x number,

number) in step 2. since x the function can be applied to a number in the next phase. and hence ' ill be

bound to a number in the next phase. This binding, in effect, declares x to be type number in the next

phase.

On the other hand. if thc result of step 3 will be erIB. then we should supply a binding of x to the

ERT <x. <xert). ert> in step 2. since x another check-apply will be evaluated in the next phase.

and hence P must be bound to another ert in the next phase. This binding, in effecL declaresx to be

r. pe ert in the next phase.
.

Here is the dilemma. Since the result of e\dluatn-g the body in step 3 %ill in generdi depend on

factors other than just the binding of , (in h! case it also depends on the binding off from outside).

,e cannot generall) kno \khich biding for to use in step : unul *we know the result of step 3"

In our example, two potential \alues fOr f tiat \ould cause different results Aould he the ERT: ."

f Expression

((f (fun number number, )eQureO-env ronmtnt

(fun number number) Type

MI 10 '-P



and the ERT:

f Expression
((f ert)) Required-environment
ert .Type

5.3.1. Evaluating the Body Twice

One w a\ to deal with this dilemma might be to first assume that the choCk-lamIbda'S body expression

will evaluate to an ERT that will be ready to be "fully" evaluated during the next phase; that is. first

assume that step 3 will evaluate to an ERT such as erIA, in which the Type component is not ert.

Thus. v e w.ould initially bind x to the ERT <~x, xnumber).number>. If the Type component of the

result of step 3 turns out to be a basic (no-ERT) type, such as eriA. then all is welL, and the resu'lt of

check - amboa should be a lambda ERT. such as eril. However, if the Type component turns out to be

srt. such as in eriB. then we bind x to the ERT <. <. art>,,ert and re-evaluate the body'as instep 3

again.

5.3.2. Evaluating with Both Choices at Once

-N more efficient solution might be to base the execution of exprbody generate the tw~o ERTs. under

both assumptons. But v. hat happens v, hen functions are nested' Must 4. 8, etc.. ERTs be generated?

When can the choice% be eliminated'

5.3.3. U~sing an Extra Env ironment Variable

SMIrC LhC difficult', Seems tLI be in deciding ,Ahich binding to use for the formal paramet.er another

pos~~:mizhi he for the D~namic-Ill \achine to use in extra en'ironment %anable 4hilc a

c Sec. -'arita hnd% is being executed. ind~cirnne the names of an idenufficrs that are bound as fo)rmal

pararctcrs !-hose idcnufiers could the,. hc .reited speciills tbs Lne D~namicill MIachine This might

iiOlA ,he 'hod, to be e'.aluared in one pass But notice, then. that the machine would essentialk be

pla'inr the reic of t'o distinct machines. depending on A.hether this exstra ensironment \anable were "
set.

% % W

% 4.

%5 %4.
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5.3.4. The Root of the Problem

The root of the problem is that we are asking the Dynamic-IL Machine to do two kinds of things

during the same phase: to partially and full. eialuaie certain subexpressions, and to compile certain

subexpressions for future partial or full evaluation. Section 5.4 proposes another solution.

5.4. A Strongly Typed Phase Compiler

A better approach to the problems of implementing check-lambda in Dynamic-[L might be to

evaluate programs in two distinct passes: call the first pass phase compilation and the second pass phase

evaluation. As before, phase evaluation would perform both partial and full evaluation, filling the roles

of traditional compiletime and runtime.

During phase compilation every expression would be treated symbolically: none of the

subexpressions would evaluate to a final (constant) %alue and no type checking would be done. The

purpose of phase compilation would be to decide which subexpressions can be fully evaluated and

which should be partially evaluated. The resulting program will have these decisions syntactically built

into it (as with lambda, check-lambda, etc.). ready for phase evaluation. To make these decisions, the

phase compiler must know which of the program's free variables are to be given final (constant) values

during phase e'aluation.

Phase ei2aluation could then fully evaluate some subexpressions and partially evaluate others. The

result of the phase e\aluauon would either be some final constant or another program (ERT), but its

type %ould be known beforehand. The key to this approach is that the type of e\er expression is

kmm n before phase evaluation. Thus. those expressions being fully evaluated can be e~aluated just as

efficientl, as on a conentional (i.e. fully e~aiua'mg) abstract machine, even though the phase

e\ al ua ion mchine is also performing parual c\ aluation for a strongly typed language.

Z. %
I."." approach. for suongl. typed iarguagcs :s anaitou., to he "'compiled genration" approach

used h. Beckman. ct al. [Beckman 761 in partia;], c aluating LISP programs.

Pu % .% % % % %
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Chapter 6
Remarks About Other Language Notions

This section discusses some miscellaneous language notions, and shows how phases are relevant to

them or vice-versa.

6.1. Abstract Data Types

This section discusses one possible approach to providing Abstract Data Types (ADTs) under a N

model of phases. The purpose of this section is to demonstrate some of the usefulness of manipulating

ERTs under a model of phases. The ERT data type makes it easy to talk clearly and sensibly about

compiletime notions such as enforcing the information hiding needed to implement ADTs.
'p.

Our norton of ADTs is intended to be ordinary -- corresponding basically to Ada packages, for

example -- but our view of implementing ADTs is somewhat unusual. and is motivated by the fact that

we treat types and code (ERTs) as first-class values. That is. we intend to provide the same basic

functionaliEt of traditional ADTs. but we take an unusual view ofwhat is required and how to provide

it. In effect. this discussion treats ADTs from a compilers point of %jew. since phases fill the role of

tradtional compile-time.

'Ae .un der a newly defined ADT to be essentiall. a unique ipe and a sc' of operatiomns that are

prvleged to operate on %alues of that type. As in Ada. we assume that an ADT has no separate

funcuiona, or behasioral specification: its intended behavior is defined only, b. its implementauon

I ht pr,'z.ammer defines a neA AD I in terms of other t\ pes and operati(.ii. thus suppling an ',
:mplementation for it. The implementaton should be ' *dden from the user: this information hiding ,.,.

should he enforced b\ the language. 'p

SinLc n dtrongl\ typed language. this information hiding must he enforced b\ the compiler, and

.hcr. nec not be anthing special about tie runume code. A[)ls are e-oenualiy compiletime notions.

Unde a- mode] of phases. a phase fills the role of compiletime. manipulating both types and code

(ERI ! a first-class 'alues. Therefore. to understand the following discussion, it is best to think of

84
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ADTs in terms of what a compiler must do to enforce the required information hiding. To focus onlh

on the essential elements, we do not address scoping rules or other extraneous issues such as providing ,' "'-

separate declarations of ADT headers and bodies. as is allowed in Ada.

6.1.1. Four Essential Functions

Let us personify the portion of the program that implements the ADT as the implemenior. and the

portion of the program that uses the ADT as the user.: To employ the canonical example. we might

define an ADT called stack, offering only push and pop functions for accessing values of type stack.
We

and use an array to implement the stack.2 7 The compiler, then, must ensure that the implementation Z' '

of type stack as an array is hidden from the user, but is available to the stack implementor.
I'

The stack implementor, then, must be privileged to perform two essential acts: to create a \alue of %. _._

the ADT from a value of the implementing type. for example, creating a stack value from an array

value: and to view a value of the ADT as a value of the implementing type. for example \ieving a

stack value as an array. Less obviously, though, in a language in which types are first-class values, the

implementor of the stack ADT must also be privileged to perform two additional essential acts: to

create the type value stack from the implementing type value array: and to vie%% the type value stack as

the type value array.

All four of these privileged acts are compiletime sleights of hand -- they are functions invol\ing

types that are computed at compiletime. Recall that during "compileume" (a relau% e terrn type and ,,

ert values are manipulated. and that in our model a phase fills the role of traditional cmptleume.

Thus. to create a stack ADT. we need the following four functions. .

abs-stack: ert ert. -
For creating values of type stack from \alues of type array Note that this function ,...

takes an ERT \alue and returns an ERT \alue -- it does not take an arra. \ alue and
return a stack \alue. Rather. it takes an e.pression (an ERT) that Aill e aluate to an

Lua:i. a stack Aouid be implemented h) a pair cons:tu.. o an arra and ai inteke wth he imteger repre'enting a .i.

pointer to the current stack top ThL detail is irrele' ant here and \he art grionng i: for the sake of (smplict\ %

2P -. . p-oh '.. t-.he hert k-o,, -. e'..M.- r : c :: ..e le' n: . , n: ' F^.,. -. zz.a.. - .'e :hr
furcuun returns an integer repreenting the argument s Utc orcinai %alue Ord is aimost urioersal! implemented ithe comp;er
s.mpl b% :cwing the bina"m representauon of its a rren: ., a ,ajue of a different type For example in a Pa-ca. si ster,'. %r
vht&i. the \SCII characier set , used. the \alue o ord(X) vAould be 88 That is. the binan \alue 1011000 L sui' pl, 'P' ::.
:nterpreted as representing an :nteger (88) instead of represcntin the ASCII character X Because the birar, rcrre ntaitio,
of these 'aiues are the saMe, the compiler does not emit am woto to Lmplement the ord funcuon Althouth the co.piier .,ould,#'€
ie, the eipression X as producing a \alue of tixpc char and the expression ordCX) w. producing a \alue :.pe integer

ibe code generated for these t'so e% pressions v ould be absolutei!idenucai

46~ % % % % , , .-. , .-
85 , ' -', \*,%
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.

array value. and returns an expression (an ERT) that will evaluate to a stack salue.
Only the Type component of the argument ERT and the result ERT will differ.

imp-stack: ert -~ert

For viewing values of type stack as %values of type array. Again, this function takes
an expression (an ERT) that wkill e'aluate to a Stack and returns an expression that
will evaluate to an array.

type-abs-stack: type - type
For creating a stack type value from an array type value. Note that this is a function
that takes a type and returns a type. The type value that is supplied as the actual ..

parameter must bc an array type vNalue: a Stack type value will be returned.

rype-imp-stack: type -type
For view ing stack type % alues as array type values. Note that this is a function that
takes a type and returns a type. The type value that is supplied as the actua:
parameter must be a Stack type value: an array type %alue Ail] be returned.%

6.1.2. Type V alues: (to g.vaiue> Pairs

Let us noA assume that type \alues are represented as~iag&%aIue> pairs.

The iog component is a symbol identif~ing the type. for example. it might te the sam'Nol ar'A

representing an\ arra\ v'pe. it is the same for ever'% arra\ tvpe.

Thic component hoids other information aou, tlai particular :- pe, h: ex.arpic it rmgK

nfflidc informnation abou! the arra%. . element tipe and si,'c (;f the ,:zc !,, a par: '. he :,.pe as ii i% *r

Pascal. for example) rhe .- impionent Ai:' gencrall. he d;fferen, for diffe-er: i--,d. :,)e-,

7'r(vrarmer-dcfined Al )I s T .ilsass ie a-)

6.1.3. Tbpe-Of nd Tag-of

T'!~ 7, : n e,. tin FR I t2' jF -i; nC:11 :C 71', tl'pt-Of .~dTAr-01 A7 t :

t,%pe-or: ert - tipe

tigcof t'%p4 - %mI -

%. %5
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III
typo-of (o.r.t> )• t

(tag-of t.v) ) t I
6.1.4. Implementations of the Four Essential Functions

The four essential functions for a stack ADT can be roughly defined as follows. Bear in mind that a

types type and ert should also be ADTs, and the programmer would not ha'e indiscriminate access to

their representations. Howe%er. for expositor, purposes. the functions defined below show the

representations of n'pe as pairs and erts as trplets. (Error, below, represents a "compiletime" error

condition indicating that the programmer tred to use one of these stack functions to convert between .

something other than a stack and an array.)

(abs-stack .e,r,<t.v> ) ,
if t - 'array

then *e.r.<'stack.<t.v>)) -- Save the implementing type. . 4 %

else error

(imp-stack <9.r,<t~v)>>

if t • 'stack -. ' •

then <erv) -- Restore the implementing type .
else error

(type-abs-stack <t.v)

if t - 'array

then *stack.<t,v>. -- Save the implementing type.

else error . . ,

(type-imp-stack ee.r.<t.v>) ) •
if t * stack ' - -

then v -- Restore the implementing type.

else error

lhe relationships bet-,c cen these four functions are illustrated in Figure 6- 1.

6.1.5. Defining a Ne, Abstract Data Type

Jo allo" a ne A abstract data tspe to be defined, the language needs to suppl% a function that 'ill

create and return the four functions descnbed aboxe. with a neA uniquel. generated tag embedded n--

Lhern 41c rc, tg Sh-uuid ..() be. returned. i ,ti ,., di e pio mrmmur Lk, vsi fkr U;b rievA t, pe %, ithk - ,

:ncumng an error.

, %*
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Figure 6-1:

Implementing Abstract Data Types

Abstraction Implementation .

type-abs-stack

< stack, <array, v>> <array, v >

type-imp-stack

Types
(represented as
<tag, value>)

pt-of ype-of

ERTs
( <e,r,t> )

abs-stack

< e, r, <stack,<array, v>> > < e, r, <array, v> >
Imp-stack

8.,.
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6.2. Dependent Types

Dependent types, for example. of Pebble [Burstall 84]. are compound types in which the type of one

element depends on the value of another element. For example, in Pebble a dependent type is used to

express the type of a polymorphic pair-swapping function:

(tl:type X t2:tvpe) -> (tlXt2 - t2Xtl)

The symbol "->" is similar to "--'" except that bound variables appear on the left and may be used

on the right to refer to their values. This polymorphic swapping function is actually a function that

returns a function: it is first given the types of the elements to swap, and the result is then a swapping

function, specific to those types, that may be applied to an actual pair of elements. It swaps and returns

the first and second elements of the pair. Thus, for example, if we wish to swap tint, booll pairs,

returning [bool, int] pairs, instantiating swap for these types would yield a function value of type

intXbool - boolXint:

swaplint.bool: intXbool -* boolXint

Dependent types seem to have arisen mainly from the desire to assign sensible types to all

expressions, yet also be able to parameterize something by a type, such as a polymorphic function;

manipulate type-tagged values at runtime: and define recursive types.

Phi does not offer dependent types, but some of the same functionality could be obtained in other

ways, as described below.

In Static-Phi. arbitrary type expressions can be evaluated at compiletime. and polymorphic functions

or data structures can be instantiated to particular tpes. In Pebble (Burstall 841, one is unable to talk

about a function's actual parameter without dealing with the parameter's nmtime value. But in Static-

Phi. a function's actual parameter is an ERT Nalue during the phas¢e before the function is applied, so

the Type component can meaningfully be extracted and used at that time. This also means that a

polymorphic function need not ha'e an extra explicit type parameter.

Dependent types also allow type-tagged \alues to be manipulated at runtime, and this may be a

desirable capabilitv to provide. This can be accomplished by providing a type an) -- a variable of type

any could hold a value of any other type. tagged with the value's type. A case conformnity clause can be

used to query the variable's current type and access its value while retaining strong typing. (This is
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essentially the way Algol-68 [Lindsey 711 provides union types.) Note that the current work of Gifford.

Schooler, et al. [Schooler 841 takes a very attractive approach to this: where possible, they do type

checking before runtime; if a type cannot be determined before runtime. dynamic type checking is

used.

Recursive types are discussed in Section 7.2.7.

6.3. Type Checking Recursive Functions

The question usually arises: "Is there any special difficulty in type checking recursive functions?"

Not when the function's parameter and return types are declared. In fact, the type checking is very

sinilar to the non-recursive case, even when types are allowed as first-class values.

The idea of a recursive function is that the function's name can be used inside the function body.

The only impact this has on type checking is that the function's type must be known inside the body.

This is easy to arrange. because the function's type is known from parameter and return type

declarations.

Compare the type checking required for a non-recursive let construct versus a recursive letrec

construct. The two constructs would be:

let id: exprtyp,ex = &lug ill exprbody

letrec id: exPrtype = exprValue in exprbody

In each case. exprtype gives the type of the bound variable id. Call this type t. The onh difference in
type checking the two constructs is that in type checking expr ue for letrec. id is known to be type t.

rather than whatever type it may have been declared to be in the surrounding scope. This is true even

if hc function happens to construct a type \alue.29

29A, ncntioned in Secvion 3 3 2 the t.\pe Lhal is constnicted can be used as an inanant of he nexi phase (i.e it cmn be used in
a dedara;ion pertaining to the next phase) buz it cannot be used as an inanant of the phase dunng uhich it is computed
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Chapter 7
Conclusions and Future Work

7.1. Conclusions

This work has addressed the basic question of whether types and code can be manipulated as

first-class values while retaining strong typing. We demonstrated how this can be done by introducing

the notion of multiple strongly typed evaluation phases. In the simplest case, two phases correspond to

the traditional notions of compiletime and runtime, though a single machine is used for both. In
general, multiple phases may be used, and each phase acts as compiletime relative to the next phase. or

runtime relative to the previous phase. Types that are freely manipulated as first-class values during

one phase become invariants of the next phase, thus guaranteeing that the next phase is strongly typed.

One benefit of allowing types and code to be manipulated as first-class values under the model of
phases is that the same abstract machine can be used to both compile and run the program. This

means that all of the features that are available in the language at runtime are also available at
compiletime. The features only need to be implemented once in the single machine, and they are thus

guaranteed to have the same semantics at compiletime and runtime. Thus. for example. constant
expressions can be evaluated at compiletime using the same efficient evaluation mechanism as is used

at runtime. whereas, in general. a conventional compiler must simulate the action of the runtime
machine in evaluating constant expressions. The single machine is therefore inherently "efficient" in '"
two respects: (1) for runtime operations, it can have the same efficiency as a conventional machine in

evaluating unt.ped lambda calculus expressions. even though it has the additional capability of =

performing compiletime operations: and (2) for compiletime operations it can be much more efficient
than a conventional compiler, because compiletime tasks that can already be performed at runtime.

such as evaluating constant expressions. are executed directly rather than being simulated.

The special abstract data type ERT is essential to constricting and manipulating code fragments as
first-class 'alues. while capturing all information necessary to ensure that any code generated in this
manner will be strongly typed. The ERT data type makes it possible to use the same abstract machine

to do the compiletime operations of type checking and code generation, as well as conventional
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runtime operations. The ERT data type also makes it easy to talk sensibly about compiletime notions

such as asking for the type of an expression, or dealing with the type conversions involved in

implementing abstract data types.

The notion of phases, with its ERT data type and uniform treatment of compiletime and runtume,

gives insight into the semantic processing that occurs during compiletime and runtime. It also gives

insight into how to efficiently implement compiletime notions such as type checking, using runtime

machinery, and how to efficiently provide runtime notions at compiletime.

We believe that the notions of strong typing, types as first-class values, and partial or phase

evaluation complement each other handsomely in providing a language basis for writing more

reusable, correct. and efficient software: "reusable" because types can be manipulated as first-class

values, and because of the ability to construct new strongly-typed programs with phases or specialize

programs with partial evaluation; "correct" because of strong typing: and "efficient" because of the

ability to perform much of the computation before runtime.

The following sections outline some suggested future work.

7.2. Subjects for Further Study

7.2.1. Developing a Practical Language Based on Static-Phi and Static-IL

The particular model of phases embodied in the Static-Phi and Static-IL languages of Chapter 4 are

based on typed and untyped versions of the lambda calculus, and were presented as purely pedagogical
languages. It would be reasonably straightforward to expand these into useful real-life functional

languages %ith a full complement of data types and operators. I

7.2.2. Using Phases for Partial Evaluation

This as discussed in Chapter 5.
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7.2.3. Constructing and Maintaining Environments

More work is needed on how to effectively generate and manipulate the environment required for

each phase. This comes in the larger context of programming methodology.

7.2.4. Determining the Source of a Bug

Suppose a bug is discovered. Where did it originate? During what phase? To some extent, the

difficulty of determining the origin of a bug becomes inherently more difficult with more reusable

software, in the following sense. When a program is constructed from several pieces of different

origins, it may be more difficult to know which piece of the program is at fault when a bug is

discovered. On the other hand, if a standard set of reusable software components are provided, they

can be very thoroughly debugged. Overall, we do not know whether multiple phases will make

debugging significantly more or less difficult.

7.2.5. Universal Polymorphism

A function is polymorphic if different parameter tqes may be used in different invocations. Burstall

and Lampson [Burstall 84] distinguish between two kinds of polymorphism (attributing the distinction

to C. Strachey [Strachey 671):

Ad hoc [or Generic) polymorphism
The code executed depends on the type of the argument, e.g., 'print 3'
involves different code from 'print "nonsense"'.

Universal [or Parametric] polymorphism
The same code is executed regardless of the type of the argument.
since the different types of data have uniform representation, e.g.reverse[I. 23.4) and reversefl'rue.falsefalse).

Ad hoc polymorphism is the natural form of pob.morphism under phases. Universal polymorphism %

seems to require something additional. The basic difficulty is that., in type checking the call of a

universally polymorphic function, such as reverse (abo~e), different result types should be returned for

calls using different actual parameter types. even though the same function will be called at runtime.

Furthermore. a mechanism for type checking the function body once, independent of call types. should
be provided.

ML fGordon 79] uses unification in type checking pohmorphic functions. Unification in\olhes I

93

%P .0..A... %0

NI" s%-%



having the language processor perform substantial computations involving types. This approach might

be used here. although it would seem to be somewhat contrary to the underlying philosophy of having

types of expressions simply computed rather than inferred by a more complex language processor. it

would be most attractive to use an approach that takes advantage of a language's existing ability to

explicitly manipulate types as first-class values, as the Static-Phi language does, rather than adding type

inference machinery to the language processor. We do not know how best to do this.

7.2.6. Inferring Types

As explained in Section 1.3.1, this work was motivated by a bias toward expressing rather than

inferring. However, much notable work on data types. such as ML [Gordon 79] has involved type

inference. It would be good to explore the relationship between type inference systems and our model

of multiple phases, which is based on types being computed directy. Maybe a hybrid would be

feasible.

7.2.7. Recursive Types %

A recursi*e type is a type defined in terms of itself. Recursive types are most often used in defining

lists. sequences. or trees of unbounded size. The problem of representing recursive types is similar to

the problem of representing recursive function values or any other infinite structure. The basic

problem is how to represent the infinite structure in finite space and time while providing convenient

mechanisms for manipulating and comparing values of the infinite structure. There are se% eral ways

recursi' e types might be implemented in Phi.

One ,ka. to represent recursi'e types might be to use a circular data structure to represent the type.

Another approach to representing recursi'e types might be to use abstraction to delay the evaluation

ofa recursi c t: pe. Consider the following hypothetical type definition:

letrec i = (list-of r)
in ...

The list-of operation is intended to return a lit tpe for any given element type. The hypothetical

example abo'c is intended to define a type i that is recursively a list of elements of type t. Some

example \alucs of this type might be the empty list ( or the list containing tko empty lists (t )( )).

30Re )cI ds fRv: nolds F->. for example. uses a specaal rect'pe operation. which is a kind of abstraction m..chanicrn, for
expressing recursi\c t\pes
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Clearly, some kind of delay mechanism is needed to avoid going into an infinite loop in trying to

evaluate (list-of ) in the example above. 31 Function abstraction generally provides a kind of quoting

that delays evaluation of the function body until the function is invoked, rather than evaluating the

body when the function value (closure) is created.

Now compare the following:

V t, (element-type-of (list-of t)) t

V t, (apply (lambda 0 t) 0) =

The list-of operation creates a list type where the elements must be type t, and element-type-of returns a

list type's element type. Note that these operations deal with iype values -- they do not create or

examine list values. Lambda (with an empty formal parameter list, in this case) creates a function

abstraction, and apply applies the function abstraction (to an empty actual parameter list, in this case),

as in LISP [McCarthy 66]. The operation list-of is analogous to function abstraction, and the operation

element-type-of is analogous to function application.

The example above showed that there is an analogy between function abstraction and the kind of

delay mechanism needed to allow recursive type definitions. Could function abstraction be used to

implement recursive types? Certain type operations, such as list-of, might act as function abstractions. %

and one of these would have to enclose each appearance of the type name being recursively defined.

(Note that this corresponds to the Algol-68 or Pascal rules for defining recursive types, in which an

intervening reference or pointer type must be used in any recursive type definition.) Other type

operations. such as element-type-of. would act as function application. forcing the element type of the %

list to be computed. just as function application causes the function body to be evaluated.

This approach has not been A orked out for Phi. We do not know if it \&ould be feasible or practical.

3P Z. lngerman's Thunk, used to implement call-b.,-name parameter passing in Alcol 00 is the classic exampie of a deia.\

rch.,nism (Pratt 751. Laz,, e\aluatuon [Henderson 801 is another technique. . -

95 %1

d& IAL
% %4

I %



7.2.8. ERT Subtypes

One unsatisfactory aspect of ERT triplets <e, r. 0 is that if the type component is ert (indicating that

the expression will evaluate to an ERT in the next phase), there is no further information about what

type of value might be computed in the following phase. In fact, the Static-IL construct doep-const

hides the types of constants until the phase before the constant will be used. thus preventing any

compiletime type errors regarding that constant from being detected earlier. It would certainly be

better to detect all errors as early as possible.
h'.

One way to support earlier error detection might be to introduce subtypes of the ert type that

provide some information about an expression's final type, if known. Consider the following Static-Phi

program.

X x: tl - .t2 (gx)

Recall from Section 3.3.4 that every subexpression starts out being type ert; thus the X expression

above will initially be considered type et. But regardless of what types tl and 2 turn out to be. it is

syntactically obvious that the above expression will eventually evaluate to some kind of function value.

Hence, it might be useful to initially consider the expression to be a type that is a subtype of ert. such as
"ert of fun", which carries more information than the simple ent type carries. Similarly, if tI and t2

happen to be type constants such, as number, an even more specific subtype might be returned, such as
"ert of <fun number number)", which represents the type of an expression that will become a function

from numbers to numbers in some future phase.

We do not know whether ERT subtypes will provide the right practical mechanism for early error

detection. or whether some other approach would be better. .e..r

7.2.9. Statically Inferred Phases

In Static-Phi. phases are assigned staticall. b the Translator. based on emit and eval constructs

explicitly embedded in the Static-Phi program. To ease the programmer's burden, it might be possible

to have the Phi Translator automatically determine which subcomputations should be performed

dunng which phases. without requiring the programmer to designate them explicitly.

N~ JN
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Appendix A:
Formal Semantics of Static-Phi and Static-IL

Introduction
This section gives a semantics for phase evaluation of Static-Phi expressions. The semantics of a

Static-Phi expression are given by two sets of semantic equations: one set of equations corresponds
to translating the Static-Phi expression into a Static-IL expression (in the Expression component of

an ERT); the other set corresponds to evaluating a Static-IL expression. This is therefore an

operational semantics, though we write it in a denotational style using continuations.

Static-Phi Syntax Domains

id E ID -- Identifiers.

b E BOOLEAN -- Booleans. .

n E NUMBER -- Numbers.

t E BTYPE -- Basic type constants.

e E EXPR -- Static-Phi expressions. A program is an EXPR.

Static-Phi Syntax Equations
ID = -- Identifiers.

BOOLEAN- true, fe6 -- Booleans.

NUMBER- 0, 1, 2 ... -- Numbers.

BTYPE- boolean, number, type, ort
-- Basic (non-function) type constants.

EXPR = ID -- Identifier
+ BOOLEAN -- Boolean constant
+ NUMBER -- Number constant ',
+ BTYPE -- Basic (non-function) type constant
+ (funtype EXPR EXPR ) -- For expressing the types of functions
+ (emit EXPR ) -- Normal runtime phase is one phase later
+ (eval EXPR ) -- Normal runtime phase is one phase earlier ,

+ X ID : EXPR - EXPR . EXPR -- Abstraction, with parameter. return types PIN
+ ( EXPR EXPR ) -- Function application

Static-IL (Semantic) Domains
These domains are best interpreted as semantic domains, though they are sometimes used as though

they were syntactic domains. The reason for this is to avoid having to deal with the cumbersome
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detail of two parallel domains -- one syntactic and one semantic -- and a trivial semantic

correspondence between them.

id E ID -- Identifiers. Same domain as in Static-Phi.

b E BOOLEAN -- Booleans. Same domain as in Static-Phi.

mn E NUMBER -- Numbers. Same domain as in Static-Phi.

t E TYPE -- Types. Includes both basic types and function types.

r E RENV -- Required-environment. Lists identifiers and their types.

e E EXPR -- Static-IL expressions. A program is an EXPR.

ert e ERT -- Triplet < e, r. t >: e is an expression, r is a list of *I

identifier-type pairs, and t is a type. We deal only with a
restricted set of ERT triplets, for which r lists all free
variables and their types in e, and e is guaranteed to
evaluate to a value of type t (or some error condition).

env E ENV -- Environments .'.'

v E EV -- Expressible values.

k e ECONT -- Expression continuations.

err E ERROR -- "Compiletime" errors of various kinds.

Static-IL Domain Equations
ID = ID -- Identifiers from Static-IL.

BOOLEAN = BOOLEAN -- Booleans from Static-IL.

NUMBER = NUMBER -- Numbers from Static-IL.

FTYPE = ffunj x TYPE x TYPE -- Function type: domain, range. . ,.-

TYPE = STYPE -- Basic types,

+ FTYPE -- Function types.

RENV = (<>} -- Required-environment.I'
+ (ID x TYPE ) x RENV (Identifier, type pairs.) Note that

required-environments are represented
slightly differently in this appendix than in
the body of this work.
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EXPR = ID -- Static-IL expressions.
+ (quote EV)
+ (incr EXPR)
+ (check-funtype EXPR EXPR NUMBER)
+ (funtype EXPR EXPR )
+ (check-check-lambda ID EXPR EXPR EXPR NUMBER)
+ (check-lambda ID EXPR EXPR EXPR)
+ (lambda ID EXPR )
+ (check-apply EXPR EXPR)
+ (apply EXPR EXPR )
+ (deep-const EV TYPE NUMBER )

ERT = EXPR x RENV x TYPE -- ERT triplet. Free variables of EXPR are
listed in RENV with their types. EXPR
evaluates to a value of type TYPE.

CLOSURE = ID x EXPR x ENV -- Function closures

EV = BOOLEAN -- Expressible values
+ NUMBER
+ TYPE
+ ERT
+ CLOSURE

ENV = ID --+ EV -- An environment is a function from
identifiers to expressible values. Note that
environments are represented slightly
differently in this appendix than in the
body of this work.

ECONT = EV -, [EV + ERROR I -- An expression continuation.

ERROR = ( error-non-type, -- "Compiletime" errors possible.
error-non-function,
error-inconsistent-req-enve,
error-type-mismatch,
error-different-type-used-in-body.
error-ert-expected,
error-non-art,
error-body-is-not-ert,
error-body-and-range-types-differ,
error-arg-ready-before-function }

Meta-Language Notation
The translation rules and semantic equations will use a meta-language including if, where, let and
maximum constructs. They are written in this font. Comments on a line are preceded by ' --

Tuples are written, for example. as "<a. b>". Function application is written, for example. as "(f
x)". The continuation-style operator ";" also denotes function application, but it is right associative
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and binds weakly. Thus, "f: g: x" means "(f (g x))". The body of a lambda abstraction "k x.

extends as far to the right as possible.

We use the operators "+" and "-" to concatenate two Required-environments, and to remove all

occurrences of an identifier from a Required-environment. We use the notation env[v/id] to

denote the environment env augmented by the binding of v to id. (Remember that a

"Required-environment" is not the same as an "environment"!) More formally, we can recursively

define these operations:

ri + r2 i if rl = <>
then r2
else let <<idltl>,rl'> = rl

in <<idi.ti>. rl' + r2>

r - id = if r = <> then r
else let <<idl.tl>,r> = r

in if idl - id then r' - id
else <<idl.tl>. r' - id> %

env[v/idl t . idl . if idl - id then v else env(idl)

(Note that the equality "-" used here between identifiers is true iff the two identifiers are same

identifier -- it has nothing to do with the values of those identifiers.)

Translating from Static-Phi to Static-IL

A Static-Phi expression is not evaluated directly. Instead, it is first translated to a corresponding

Static-IL expression (contained in an ERT), which is in turn evaluated through one or more phases.

The function Trans-count is applied to the Static-Phi program and produces the Static-IL,.

translation by calling auxiliary functions Trans and Count. These functions have the following types:

Trans-count: EXPR --* ERT %',.

Count: EXPR X NUMBER NUMBER
Trans: EXPR X NUMBER - ERT

The TYPE component of the ERT that Trans or Trans-count returns will always be ort. the EXPR

component will be the Static-IL expression corresponding to EXPR. and the RENV component will

list all the free variables appearing in that EXPR component. Each variable is initially type ert.

Trans-count is simply defined as follows:

Trans-count[ e ] Trans[ e. Count[ e. 0 1 ]

Function Count is used to count the depth of the minimum number of phases required. and Trans

does the real translation work. These functions are defined below.
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Auxiliary Function "Count"
Function Count actually counts a depth, which may be positive or negative, rather than the number
of phases required. The parameter n represents the current normal runtime phase -- the number

of phases before some arbitrary phase 0. Thus, a more positive n indicates an earlier phase, and a

less positive (or negative) n indicates a later phase. Thus, this numbering is the opposite from

phase numbering used in previous chapters of this work. The reason for this is that in translation
and phase evaluation the emphasis is on the number of phases required. rather than the number of

phases that have already been performed. The following rules define Count.

Count ( id, n n !, n U
An identifier does not need any extra type checking phases.

Count( b, n ] = n+1

Countf m, n ] = n+1

Count[ t, n ] -n+1

Constants need only one extra phase for type checking.

Count( (funtype el e2). n I 
%

Maximum( n+., Count(el,n] , Countfe2,nj

The funtype construct itself needs one extra phase for type checking. but the subexpressions may
need more, so we take the maximum.

Count[ X id : el-. e2 . e3, n =

Maximum{n 2, Count [el,n+1] , Count (e2,n+l , Count [e3.n]

The X construct requires two extra phases: one to type check the function itself, and one to check
the types of the domain and return type expressions. Of course, the subexpressions may need more.
so, as with funtype, we take the maximum. Also note that subexpressions el and e2 are
implicitly inside an eval; hence the "n+1"s.

Count( (el e2). n ] -
Maximum{ n+1, Count fel,n], Count[e2,n]

Function application itself needs one extra phase for t.pe checking, but the subexpressions may

need more, so again we take the maximum.

Count (emit e), n Count[ e, n- I

The emit construct is not a runtime notion at all. The number of phases required just depends on 1
the subexpression, but note that its normal runtime phase will one phase later. Trans will take that ".'

into account during translation, so we anticipate it here by subtracting one from the current depth.

.
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Count[ (eval e), n I - Count[ e, n+1 I

The inverse of emit.

Translation Rules
Trans[ id, n I = < id, << id, at >, <>>, oat > -- Identifiers

Each identifier is initially type eat. The EXPR component is simply the identifier, hence the
required-environment only lists this one identifier of type eat as the free variables appearing in it.

Trans[ b, n ] = < e, <>, at >, -- Boolean constants

where 9 E EXPR = (deep-const b boolean n-I)

A constant is translated to an ERT in which the EXPR component is a deep-const expression.
There are no free variables in it; hence the required-environment component of the returned ERT is
empty.

Trans[ m, n = < e, <>, at >, -- Number constants

where 9 E EXPR = (deep-const m number n-i)

Similar to boolean constants.

Trans[ t., n = < e, <>., at >. -- Basic type constants
where 9 e EXPA = (deep-consi t type n-1)

Similar to boolean constants.

Trans[ (funtype el e2 ), n ] = -- Types of functions
let < el', rl. at >e ERT = Trans[ el, n],

< 92', r2, eat > E ERT = Trans[ e2, n "
in < (check-funtype el' e2' n-1 ), (rl + r2), at >

The subexpressions are translated to ERT's, and their RENV (required-environment) and EXPR
components are combined to form the resulting ERT. The expression components simpl. become
the subexpressions of a check-funtype expression -- they will evaluate to ERTs in the first
evaluation phase. The required-environments are simpl., concatenated because the free variables of
the whole check-funtype expression are simply the free variables of the subexpressions el' and
.2'. All variables are type eat in the first phase.

Trans( . id el e2 . e3, n I = -- Abstraction

let < 1', rl, eat > E ERT = Trans( el, n-1 I.
< e2', r2. eat > E ERT = Trans[ e2, n-1 ].
< e3', r3. ot > E ERT = Trans[ e3, n ]

in <
(check-check-lembda id 91' e2" 93' n-2).
(rl + (r2 + (r3 - id))),
oft
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The subexpressions are translated to ERTs, then combined to form the resulting ERT.

Subexpressions el and e2, which give the function's domain and range types, are inside an implied

eval; hence they are translated so that the function's domain and range types will be computed one

phase before the function value (closure) is computed. The EXPR component of the resulting ERT

simply uses the original bound variable. id, and the EXPI components from translating the

subexpressions to form the check-check-lambda expression. The required-environments are

combined, but since id is a locally bound variable inside the body expression 63', it is removed

from r3 before being combined with rl and r2. However. id is not locally bound in el' or e2' (i.e.

el' and @2' are in an outer scope) so it is not removed from rl or r2.

Trans( ( el e2 ), n ] = -- Function application

let <91', rl, ert >EERT = Trans[ el, n],

< 92', r2, ert > E ERT = Trans[ e2, n ]
in < (check-apply el' e2' ), (rl + r2). ert >

The subexpressions are translated and combined to form the resulting check-apply ERT.

Phase Evaluation
We now define a function, Phe%'al, that evaluates a Static-IL expression relative to some

environment env. Pheval has the following type:

Pheval: EXPR ENV --o ECONT --o ( EV + ERROR 1, or equivalently: 'd or

Pheval: EXPR -. ENV -- [EV -. [EV + ERROR ]] -- (EV + ERROR ]. i

The environment env is a function, with the following type:

env : ENV = ID - EV t%

Pheval uses two auxiliary functions: Funtype? and Consistent?. Funtype? is used on TYPEs. It is

true for functional types, i.e. types of the form <fun t1. t2>, for some types t1 and t2. It is not

defined here, but has the following type:
.

Funtype?: TYPE -* BOOLEAN ."

Auxiliary function Consistent? checks whether the types of identifiers in two required-environments
are consistent. In other words, for each identifier and type <id,t> in the first required-environment.

Consistent? checks every identifier-type pair <i',t'> in the second required-environment, and
returns false if two identifiers id and id' match but their types t and t' differ. Otherwise it returns '

true. Consistent? has the following type:

Consistent?: RENV x RENV - BOOLEAN

Formally, Consistent? can be recursively defined as follows. %

M17

j.i

P .0 .0,.1..
N~~~~~~-o o %%%% %

% "% %€
l4) "i='.%P-e & - e-"I-"



Consistent?( rl, r2 ) =
if rl = <> or r2 =<>
then true
else let <<idlti>. rl'> E RENV = rl,

<<id2,t2>, r2'> E RENV = r2
in if il = idl and tl 34 t2

then false
else Consistent?( rl', r2 ) and Consistent?( ri, r2' )

Phase Evaluation Semantic Rules
Pheval[ id I (env) (k) = k(env(id)) -- Identifier

i~

The value of the identifier is simply retrieved from the environment. For at least the first phase after
translation, the identifier is guaranteed to evaluate to an ERT. In a subsequent phase, it may 0
evaluate to a value of some other type.

Pheval[ (quote v ) ](env) (k) = k(v) -- Quoted value ,,A
A quoted value is simply returned as is. Quoted values may be of various types.

Pheval[ (incr e ) ](env) (k) = -- Increment (add 1)
Phe'al[ e ] (env): e:

X v E EV . k(v+l)

The subexpression is evaluated (it will be a number), and the resulting value plus one is passed on to
the continuation.

Pheval[ (check-funtype el e2 n ) ](env) (k) = -- For function type
Pheal[ el ](env);

X < el' rl, ti > E ERT Pheval[ e2 ](env);
K < e2', t2, t2 > E ERT.

if Consistent?( rl, r2 )
then if n > 0

then if t =ert and t2 = ert '
then k(<(check-funtype el' e2' n-1), rl+r2, art>)
else error-ert-expected -- Needed an ERT.

else if t1 = type and t2 = type
then k( < (funtype el' e2' ), rl+r2. type>

else else error-non-type -- Needed type.
else error-inconsistent-req-envs

Excluding errors, check-funtype always evaluates to an ERT, passing it on to the expression
continuation. The purpose of check-funtype is to generate a funtype expression whose
subexpressions are guaranteed to evaluate to TYPE's. In contrast with funtype. the subexpressions
of check-funtype evaluate to ERTs.

Subexpressions el and e2 are first evaluated; they evaluate to intermediate ERTs. These
intermediate ERTs will be combined to form the resulting ERT, whose expression component will
either be a check-funtype or a funtype EXPI. The required-environment components of the
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intermediate ERTs must be consistent, since they will be concatenated to form the
required-environment of the resulting ERT. The phase depth n determines whether a
check-funtype or a funtype expression is to be generated. If n>O. we still have one or more phases
to go before we should generate a chock-funtype expression, so the subexpressions must evaluate
to ERTs; otherwise (when n=O), we must generate a funtype expression. and its subexpressions must
evaluate to TYPEs.

Pheval[ (funtype el e2 ) ](env) (k) = -- Function type
Pheval[ el ](env);
X tl E TYPE Pheial[ e2 ](env);
X t2 E TYPE k( <fun ti, t2 > ) -- tl is domain; t2 is range.

Excluding errors, funtype always evaluates to a TYPE. In contrast with check-funtype, funtype's
subexpressions both evaluate to TYPEs. The final result will be a function type, containing the types
of the function's domain and range, obtained from evaluating subexpressions el and e2.

Pheval[ (check-check-lambda id e 1 e2 e3 n ) ](env) (k) =

Pheval( e1 I(env);

X <el'. rl, t1> E ERT Pheval[ 92 ](env);
X <e2', r2, t2> E ERT Pheval[ e3 ](env[<id,<<id.ert>,<>>,ert>/ic]);

.<e3', r3, t3> E ERT
if Consistent?( rl, r2 )
then if Consistent? (<<id,ert>,>.<, r3) and Consistent?(rl+r2.(r3-id))

then if t3 = er
then if n > 0

then if 0 =ort and t2=oart
then let e=(check-check-lambda id el' %

e2' e3' n-i)
in k( < e, (rl+r2+(r3-id)), ert >

else error-non-ert -- Needed ERT
else if t1 = type and t2 = type

then let e=(check-lambda id el' e2' e3'
in k( < e. (rl+r2+(r3-id)). ert > )

else else error-non-type
-- Not a type expr

else error-body-is-not-ern -- Body should be ERT
else error-different-type-used-in-body

-- Clash of used/expected types
else error-inconsistent-req-envi"

Excluding errors, check-check-lambda always evaluates to an ERT and passes it on to the

expression continuation. The purpose of check-check-lmbda is to generate a check-lambda
whose first two subexpressions are guaranteed to evaluate to values of type TYPE. In contrast to
check-lambda, all of check-check-lambda's subexpressions evaluate to ERT's.

Bound variable id is local to subexpression e3 (e3 is in a new scope), and will be bound to an ERT
within e3. whereas subexpressions el and 82 are considered to be in some outer scope. We first
evaluate el and e2 in the outer environment, and then evaluate e3 in an environment in which the
bound variable id is bound to the following ERT: <id,<<idert>,<>>,ert>. The expression
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component is simply the identifier, and it will evaluate to an EAT; hence the type component is art.

and the only free variable listed in the required-environment component is the identifier itself In

effect, this declares instances of id already appearing in the body to be type ERT. (New instances
may be introduced, however, when subexpressions evaluate to ERTs, as with macro expansion.)

The first Consistent? test ensures that any 'ariables used in the domain and range subexpressions are
the same types. The second and third Consistent? tests ensure that the body expects the formal

parameter to be type ert and that any other free variables appearing in the body have the same types

as they do in the domain and range subexpressions. These tests are necessary because

subexpressions that evaluate to EAT's can introduce new references to bound variables.

If the phase depth n>O, we have to generate another check-check-lambdo, in which case the

domain and range subexpressions must again evaluate to ERTs; otherwise, we generate a A
chock-lambda and the domain and range subexpressions must evaluate to TYPEs.

Pheval[ (check-lambda id el e2 e3 ) ](env) (k) = -- el, e2 will be TYPEs
Phevall el I (env):

. tl E TYPE Pheval[ e2 ](env):

X t2 E TYPE Pheval[ e3 ](env[ <t1,<<idt1><>>,id> / id 1);
X < t3. r3, e3* > e EAT .

if Consistent( <<id,tl>,<>>,id>, r3 )
then if t2 = t3

then k( < (lambda id . e3') r3 - id. <fun tlt2>>
else error-body-and-range-types-differ

else error-dIfferent-type-used-in-body
-- id has different type ; body

Excluding errors, check-lambda always evaluates to an EAT. Its purpose is to generate a lambda
expression whose body expects the formal parameter to be the type declared for it.

Type subexpressions el and e2 are evaluated to types tIl and t2, then body subexpression e3 is ,

evaluated to an EAT in an environment that includes a binding of the formal parameter id to the EAT
<t.<<id.t>,<>>id>. In effect, this declares existing instances of id in the bod% to be type t. The

Consistent? test is used to verify that a new instance of the formal parameter with a different t.pe

has not been injected into the body expression (as can happen with macro expansion). Finalh. the " '

body type must agree with the function's declared range type.

Phev'al[ (lambda id . e ) ](env)(k) = k( < id. e, env > ) -- Create a closure.

This is a function abstraction. To implement lexical scoping, a closure of the bound %ariable. C..

expression body, and current environment is created and returned. "
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Pheval( (check-apply e 1e2 )j(env) (k) 9 - 1 and 92 will be art's
Phevall e1 IJ(env);

X < 91 . ri. tI > iE EAT Pheval[ e2 j(env);

X <e2*. r2. t2> e EAT.
if Consistent?( ri. r2 )
then if Funtype?( t1 )

then lot -cfun t1i1, t1 2 > E FTYPE =tl -- Domain, range
in if t11 = t2

then k( < (apply el' e2' ), rl+r2. t12>
else orror-type-mlsmratah

-- Formal-actual type mismatch
else if ti art

then if Q2 = art
then k( <(check-apply 91' e2' ). rl+r2. trt>)%*
else error-erg-ready-before-function

else error-non-function -- Not function or art
else error-Inconsistent-req-envs

Excluding error%, check-apply will always evaluate to an EAT. Its purpose is to generate an apply%%%
expression thac has been type checked to guarantee that the first argument whill e'.aluate to a X.

function, and the second argument will evaluate to the type declared for the function's formal
parameter. In contrast with apply, the subexpressions of check-apply both evaluate to EATs.

Subexpressions el and e2 are evaluated to EATs, and the required-environments of these ERT , must

be consistent. they are checked as in previous cases. If ti is a function type. the function

subexpression al1* will evaluate to a function to be applied to the actual parameter in the next phase;
hence the type of the actual parameter must match the function's declared formal parameter t~pe.
and an apply EAT will be generated. Otherw~ise. t1 should be art. indicating that the function
subexpression will again evaluate to an EAT during the next phase. In this case. t2 -should als.o be art
(indicating that the argument subexpression will also evaluate to an EAT), and another check-apply
will be generated. At this point, it is an error if Q2 isn't art, since this means that the argument is
ready to ev.aluate to some fixed, non-EAT value before the function expression is ready to e~ aluate
to a function value.

Phe %a/( (apply e6I e2 )](env) (k) =--Function application
Phe~aI( e1 ](env):

-c< id. e, env' >e CLOSURE . Phieval( e2 IJ(env):

Xv 4E EV . Pheval[ * 1I(env'[v/idl) (k)

N\ormal function application. Subexpression 61 is guaranteed to evaluate to a function closure. aind
e2 evaluates to the actual parameter, the t~pe of which is guaranteed to be the domain t .pe ol the
function.

Proving That No Runtime Type Errors Are Possible
%..

This section briefly briefly sketches how to approach proving the assertion that runtime tpe errors ., -

are not possible in Static-I1L. The more specific assertion is that every ERT generated b) this s~stem
is valid. (This will be clarified below.) Overall, the proof is by induction on the number of p hases
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used to produce the ERT. The basis is zero phases, when the ERT is produced directly by the

Translator. Both the base case and the induction step are, in turn, proved using structural induction

on the original Stauc-Phi program or the Static-IL Expression component of the ERT.

First off, we must define what we mean by "runtime type error" in order to show that such errors

are not possible. The easiest way to do this is probably to add an explicit type tag to the values that
are manipulated by Static-IL programs, and then to define runtime type errors in terms of these

t)pe tags.

Next we must specifically define what it means for an environment to satisfy a
Required-environment. The environment must supply bindings of the proper types for all of the '-a
identifiers listed in the Required-environment.

Now, we really want to prose that every ERT produced by this system is "valid", so we must define
valid". Basically, an ERT <er,t> is valid if, in an environment that satisfies the

Required-environment r, a is guaranteed to evaluate to a value of type t (or to some compile-time
error value) without incurnng any runtime type errors. -,'

With the proper definitions in order, the proof would proceed by induction on the number of phases

used to produce the ERT.

Basis. The basis is when zero phases were used to produce the ERT. that is. we must first show that
the translator always produces a valid ERT This part would be done using structural induction on .* %

the original Static-Phi program. The most important thing to note in this part is that the result of the

Count function used in translation is completely irrelevant to the proof. The n parameter used b% .. I

several of the Static-IL constructs to determine how many phases to wait, has no bearing on the tpe
correctness of the system.

Inductive h)potheses. Next. we consider any valid ERT <e.r.t>. and any environment env that
satisfies the required environment r. Thus, the basic inductive hypothesis is that <e.r.t> is 'ahd and
that the environment env satisfies the Required-en%ironment r. But furthermore. we must construct 4

the right hypothesis on the environment to ensure that no Trojan horse runtime type errors can
sneak in through the environment. Ever. ERT alue that comes from the environment must be .

valid, and eserN function that comes from the enuironment must be assured to execute 'Athout

runtime type errors.

Induction. We must now prose that if t=ert then Pheval[e (env) (Xv.v) is either a valid ERT or one
of the comptletime error values. This %ould proceed bv structural induction on e r
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